Pacific Journal of Mathematics

Integral solutions to the incidence equation for finite projective plane cases of orders $n\equiv =2\,({\rm mod}\,4)$.

E. C. Johnsen

Article information

Source
Pacific J. Math., Volume 17, Number 1 (1966), 97-120.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102994730

Mathematical Reviews number (MathSciNet)
MR0190012

Zentralblatt MATH identifier
0142.25301

Subjects
Primary: 05.27
Secondary: 50.70

Citation

Johnsen, E. C. Integral solutions to the incidence equation for finite projective plane cases of orders $n\equiv =2\,({\rm mod}\,4)$. Pacific J. Math. 17 (1966), no. 1, 97--120. https://projecteuclid.org/euclid.pjm/1102994730


Export citation

References

  • [1] Leonard Baumert, S. W. Golomb, and Marshall Hall, Jr., Discovery of an Hadamard matrix of order 92, Bull. Amer. Math. Soc. 68 (1962), 237-238.
  • [2] L. D. Baumert and Marshall Hall, Jr., A new construction for Hadamard Matrices, Bull. Amer. Math. Soc. 71 (1965), 169-170.
  • [3] Alfred Brauer, On a new class of Hadamard determinants,Math. Zeit. 58 (1953), 219-255.
  • [4] R. H. Bruck and H. J. Ryser, The Nonexistence of Certain Finite Protective Planes, Can J. Math. 1 (1949), 88-93.
  • [5] E. C. Dade and K. Goldberg, The construction of Hadamard matrices, Michigan Math. J. 6 (1959), 247-250.
  • [6] H. A. David, The Method of Paired Comparisons, Hafner Publishing Company, New York, 1963.
  • [7] Hartmut Ehlich, Neue Hadamard-Matrizen, Arch, der Math., 16 (1965), 34-36.
  • [8] Karl Goldberg, Hadamard Matrices of Order Cube Plus One, to appear in Proc. Amer. Math. Soc.
  • [9] W. Gruner, Einlagerung des regular en n-Simplex in den n-dimensionalenWurfel, Comment. Math. Helv. 12 (1939-1940), 149-152.
  • [10] M. J. Hadamard, Resolution d'une question relative aux determinants,Bull, des Sciences Mathematiques (2), 17 (1893), part 1, 240-246.
  • [11] Marshall Hall and H. J. Ryser, Normal completions of incidence matrices, Amer. J. Math. 76 (1954), 581-589.
  • [12] R. E. A. C. Paley, On Orthogonal matrices, J. Math, and Phys. 12 (1933), 311-320.
  • [13] H. J. Ryser, A note on a combinatorial problem, Proc. Amer. Math. Soc. 1 (1950), 422-424. 14fMatrices with integer elements in combinatorial investigations,Amer. J. Math. 74 (1952), 769-773.
  • [15] H. J. Ryser, Matrices of zeros and ones in combinatorial mathematics, in Hans Schneider (Editor), Recent Advances in MatrixTheory, The University of Wisconsin Press, Madison, 1964.
  • [16] Umberto Scarpis, Sui Determinants di Valore Massimo, Rend, della R. Istituto Lombardo di Scienze e Lettere (2), 31 (1898), 1441-1446.
  • [17] R. G. Stanton and D. A. Sprott, A familyof difference Sets, Canad. J. Math. 10 (1958), 73-77.
  • [18] J. J. Sylvester, Thoughts on inverse orthogonal matrices, simultaneous sign-succes- sions, and tessellated pavements in two or more colours, with applications to Newton's rule, ornamental tile-work, and the theory of numbers, Phil. Mag. (4), 34 (1867), 461-475.
  • [19] J. A. Todd, A combinatorial problem, J. Math, and Phys. 12 (1933), 321-333.
  • [20] John Williamson, Hadamard''s determinant theorem and the sum of four squares, Duke Math. J. 11 (1944), 65-81.
  • [21] John Williamson, Note on Hadamard's determinant theorem, Bull. Amer. Math. Soc. 53 (1947), 608-613.