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INTEGRAL SOLUTIONS TO THE INCIDENCE
EQUATION FOR FINITE PROJECTIVE PLANE
CASES OF ORDERS 7=2 (mod 4)

E. C. JOHNSEN

A finite projective plane of order n = 2 can be considered
as a {v,k,2) design where v=n2+n+1, k=n-+1, and
A=1. As such, it can be characterized by its point-line 0, 1
incidence matrix A of order v satisfying the incidence equation

*) AAT =nl+ J,

where J is the matrix of order v consisting entirely of I’s.
Thus, if a plane of order 7 exists then (*) has an integral
solution A. Ryser has shown that if A is a normal integral
solution to (*) or if A is merely an integral solution to (*)
where 7 is odd, then A can be made into an incidence matrix
for a plane of order n by suitably multiplying its columns by
— 1, Such an integral solution to (*) we shall call a type [
solution, When A is merely an integral solution to (*) where
n is even, then A may be a type I solution but may also be
not of this type. These latter integral solutions to (*) we shall
call type II solutions. Ryser has constructed type I solutions
for n =2 and for all n = 0 (mod 4) for which there exists a
Hadamard matrix of order 7, and Hall and Ryser have con-
structed a type I/ solution for n» = 10. In this paper we
construct type II solutions for some infinite classes of values
of n =2 (mod 4). Basic to these constructions is a special
class of (v, k, 2> designs called skew-Hadamard designs whose
incidence matrices form a part of the substructure of our
type II solutions, We exhibit examples for n =26 and 50
and also derive examples for » = 10 and 18,

A v, k,\)> design is an arrangement of v elements x,, ®,, -+, @,
into v sets S, S,, ---, S, such that every set contains exactly & ele-
ments, every pair of sets has exactly A elements in common, and to
avoid certain degenerate situations, 0 S A< k=v—1. A {v,k,\)
design can be characterized by its tncidence matriz A = [a,;;] by writing
the elements z,,%,, -+, 2, in a row and the sets S, S,, ---,S, in a
column and setting a;; =1 if 2,€8S; and a;; =0 if ;¢ S,. This
matrix A, of order v, consists entirely of 0’s and 1l’s and, by the
conditions given above, is easily seen to satisfy the <incidence
equation:
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(1.1) AA" = (k — NI+ =B,

where A" is the transpose of A, I is the identity matrix of order v,
and J is the matrix of order v consisting entirely of 1’s. Conversely,
if0=N<k=v—1, a matrix A of order v consisting entirely of
0’s and 1’s and satisfying equation (1.1) is an ineidence matrix for
some {v, k, Ay design. Ryser [13] showed for a {v, k, \) design with
incidence matrix A that M(v — 1) = k(k — 1) and that A is normal, i.e.,
ATA = AA” = B, which means that every element is contained in
exactly k£ of the sets and every pair of elements are together in exactly
X\ of the sets, When =0 or k=v —1 we have the {v,1,0> or
{v,v — 1,v — 2> designs, respectively. These designs exist for every
integer v = 2 and are quite trivial. Two classes of (v, k, ) designs
will be of particular interest to us here. These are the finite projec-
tive planes of orders n = 2 wherev=n*+n+ 1, k=n + 1, x =1, and
the Hadamard designs where v=4m — 1, k=2m —1, x=m — 1,
m = 1 on integer,

We now let A be an integral solution to the incidence equation.
Although an integral solution to the incidence equation is more general
than a 0,1 solution, Ryser [14] has shown that if A is normal or if
ged(k, \) is squarefree and k£ — \ is odd, then by suitable multiplication
of the columns of A by — 1 we can obtain a 0, 1 incidence matrix
for a {v, k,\) design. Hence, for odd n the existence of a finite
projective plane of order » is equivalent to the existence of an integral
solution to the corresponding incidence equation. For even n, however,
we do not have this equivalence. When % is even, more exotic integral
solutions may and do occur. We may, of course, have design type
integral solutions like those for odd 7, which we shall call type I
solutions, or we may have integral solutions which are not of that
type, which we shall call type II solutions. Ryser [14] showed that
a type II solution exists for » = 2 and for #» = 0 (mod 4) whenever n
is the order of a Hadamard matrix, and Hall and Ryser [11] exhibit
a type II solution for n = 10. Here we shall construct type II solutions
for some infinite classes of values of # = 2 (mod 4) which satisfy the
Bruck-Ryser criterion [4]. This criterion is equivalent to saying that
n = &' + b* where a and b are odd integers. It rules out the existence
of integral solutions for all orders % = 6 (mod 8) along with some
orders » = 2 (mod 8). Basic to these constructions is a special class
of Hadamard designs called skew-Hadamard designs, whose incidence
matrices form part of the substructure of our integral solutions.

2. Skew-Hadamard matrices and designs. Let H = [h;;] be a
matrix of order n where h; =1, —1; j=1,.--,n. We call H a
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Hadamard matriz if HH® = nl. By an inequality of Hadamard [10],
H is a Hadamard matrix if and only if |det(H)|= n"’. We
immediately see that a Hadamard matrix is normal. It is easy to
show that a Hadamard matrix can only exist when n=1,2 or n =
4m, m = 1 an integer, and that a direct product of two Hadamard
matrices is a Hadamard matrix, which means that from Hadamard
matrices of orders m and » we can construct one of order mn. In [19]
J. A, Todd showed that from a Hadamard matrix of order 4m we
can obtain a related Hadamard design incidence matrix of order 4m — 1,
and conversely, m =1 an integer., Hadamard matrices and their
related Hadamard designs have been studied extensively [1], [2], [3], [5],
[71, [8], [9], [10], [12], [16], [17], [18], [19], [20], [21]. Hadamard
matrices exist for infinitely many orders 4m,m = 1 an integer, and
are conjectured to exist for all such orders. We call a Hadamard
matrix H skew-Hadamard if H + H* = 2I. These also exist for in-
finitely many orders, as will be shown later. We also call a Hadamard
design and its corresponding incidence matrix A skew-Hadamard if
A+ A" = J — I. This agreement in terminology will be justified by
the next theorem. Skew-Hadamard design incidence matrices are a
special type of round robin tournament matrix [15]. As such, they
occur in the statistical method of paired comparisons [6]. Correspond-
ing to Todd’s result for Hadamard matrices and designs, we have the
following result for skew-Hadamard matrices and designs.

THEOREM 2.1. From a skew-Hadamard matriz of order 4m we
can obtain o skew-Hadamard design incidence matrix of order 4m — 1,
and conversely, m = 1 an integer.

Proof. By multiplying the appropriate rows and the corresponding
columns of a skew-Hadamard matrix by — 1, we can bring this matrix
to the form

1(1-v1
H=|"1
©|H,
—1

Without loss of generality, assume that our original skew-Hadamard
matrix is H. Here H, consists of 1’s and — 1’s and satisfies

HH" =4ml — J

and
H, + HF =2I.
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Now let A = (J — H))/2. Then A consists of 0’s and 1’s and satisfies

aar =L~ JHF — BT + BHD)

- %((4m )T —J —J+ dml—J)

=mlI+ (m —1)J

and

A+AT=J——;—(H1+H1T)
—J—T.

Hence A is a skew-Hadamard design incidence matrix of order 4m — 1.
By reversing the above argument, we have the converse.
We note that the matrices [1] of order 1 and

1 1
-1 1
of order 2 are skew-Hadamard. Among the matrices of order 4m with

entries 1 and — 1, m = 1 an integer, we can characterize those that
are skew-Hadamard by the following theorem.

THEOREM 2.2, Let H = [h;;], hiy; =1, — 1 be a matrix of order
n=4m, m =1 an integer, and let G = H + H* — 2I. Then the
following statements are equivalent:

(a) H is a skew-Hadamard matrix.

(b) H*—2H + nl=0.

(e) The eigenvalues of H are 1 +4/n —1 and 1 —4vn —1,

each with multiplicity 2m.

(d) H is a Hadamard matrixz and tr(G*) = 0.

Proof. We shall show that (a) implies (b) implies (¢) implies (d) implies
(a). Let H be a skew-Hadamard matrix. Then HH” =nl and H+ H* =
2I imply(b). Now suppose that (b) holds. Since H cannot satisfy a first
degree polynomial, \* — 2\ + » must be its minimal polynomial, whence only
1+4/n—1 and 1 —41/n — 1 are its eigenvalues. Now the trace
of H is real; hence these two complex eigenvalues must occur with
the same multiplicity, namely, 2m. Now assume that (¢) holds. Then

det(H) = (1 + ivV7m — 1) (1l — sV — 1™ = n*P

whence H is a Hadamard matrix. Since the eigenvalues of H*® are
2—mn+21n—1and 2 —n — 2i/n— 1, each with multiplicity 2m,
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we have, moreover, that

r(G*) = tr|H* + (H") + 41 + HH" +~ H'H — 4H — 4H"]
= 2tr(H®) + 4tr(I) + 2tr(nl) — 8 tr(H)
= 2[2m(4 — 2n)] + 4n + 2n° — 8[2m - 2]
= 16m — 8mn + 4n + 2n* — 32m
=0,

hence (d) is satisfied. Now suppose (d) holds. Since G is symmetrie,
tr(G*) = 0 implies that the sum of the squares of the elements of G
is 0. Hence G = 0 and H is a skew-Hadamard matrix.

We now inquire as to whether there is a direct product type of
construction for skew-Hadamard matrices as there is for Hadamard
matrices. Such a result can be obtained as a corollary to the follow-
ing lemma of Williamson [20] in which I, denotes the identity matrix
of order » and # denotes the direct product.

LEMMA 2.3. Let C be a matrix of order m such that C* = eC,
e=1, —1, and CC" = (n — 1)I,, and let D and E be two matrices
of order m satisfying DD* = EET = ml,, and DE* = — ¢eED*. Then
the matrix K = DzI, + EiC satisfies KK* = mnl,,.

The result of interest to us here for skew-Hadamard matrices is
the following corollary.

COROLLARY 2.4. Let C + I be a skew-Hadamard matrix of order
n, and let D be a skew-Hadamard and E a symmetric Hadamard
matrie of order m such that DE' = ED*. Then the matric K =
DzI, + EiC is a skew-Hadamard matrixz of order mmn.

Proof. Clearly K consists entirely of 1’s and — 1’s. Since C + I
is a skew-Hadamard matrix, C* = — C and CC*" = (n — 1)I,, and since
D and E are both Hadamard matrices, DD* = EE* = mI,,. Now
e=—1 and we have DE” = ED”. Thus, by Lemma 2.3, we have
KK* = mnl,,. Now since D is skew-Hadamard and E is symmetric,

K + K* = Dil, + E#C + (Dil, + EiC)"
— D&I, + EiC + D3I, + ET#CT
= (D + D"il, + E+C — EiC
= 2,31,
=2I,, .

Hence K is a skew-Hadamard matrix of order mn.
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Williamson [20] obtained special cases of this corollary for m = 2
and m = p* + 1= 0 (mod 4), p a prime, « = 1 an integer, by obtain-
ing the desired pair of matrices of order m. In a different vein,
Goldberg [8] constructed a skew-Hadamard design incidence matrix of
order (m — 1)* from one of order m — 1, in effect obtaining a skew-
Hadamard matrix of order (m —1)* + 1 from one of order m. We
summarize these results in the following theorem.

THEOREM 2.5. If there exists a skew-Hadamard matrix of order
n then there exists one of order

(i) 2mn.

(ii) n(p=+1); p*+ 1= 0 (mod 4), p a prime, & = 1 an integer.

(iii)) (m — 1)* + 1,

TABLE 1.
The Existence of Skew-Hadamard Matrices for Orders 4 < n < 200
n Form Exists n Form Exists

22 SH 104 103 +1 SH
8 23 SH 108 107 + 1 SH
12 11+1 SH 112 22(33 + 1) SH

16 2¢ SH 116
20 19+1 SH 120 259+ 1) SH
24 211 + 1) SH 124 h
28 3B +1 SH 128 27 SH
32 25 SH 132 131 +1 SH
36 h 136 267 + 1) SH
40 219+ 1) SH 140 139 +1 SH
44 43 +1 SH 144 2(71 + 1) SH
48 2211 + 1) SH 148 h
52 h 152 151 +1 SH
56 2(38 4+ 1) SH 156 h
60 59 +1 SH 160 2319+ 1) SH
64 26 SH 164 163 +1 SH
68 67 +1 SH 168 283 +1) SH
72 1+1 SH 172 h
76 h 176 22(43 + 1) SH
80 22(19 + 1) SH 180 179 +1 SH
84 8 +1 SH 184 h

88 2043 + 1) SH 188
92 h 192 2411 + 1) SH
96 2311 + 1) SH 196 h
100 h 200 199+ 1 SH
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Since there exist skew-Hadamard matrices of orders 2 and
P+ 1=0 (mod 4), p a prime, « =1 an integer [12] [20], we can
apply Theorem 2.5 to obtain the following existence theorem.

THEOREM 2.6. There exists a skew-Hadamard matrixz of order
n where n s of the form

(i) 2 lfll (p¥ +1); ¢ =0, » = 0 are integers,
p‘;:——i— 1= 0 (mod 4), p; @ prime, a; = 1 an integer,
1=1,+--, 7, where _17:11(101” +1) =1 for r=0.

(ii) N, where N is dewi;;;zble from (i) by Theorem 2.5.

Table 1 gives the existence of skew-Hadamard matrices for orders
4 < n =200 according to Theorem 2.6, For comparison, this table
also gives the currently known existence of Hadamard matrices for
the same range of 7, based on constructions in the references mentioned
earlier, The symbols SH indicate that a skew-Hadamard matrix exists,
while the symbol h indicates that only non-skew-Hadamard matrices
are known to exist.

3. Constructions. By §4 of [11] we know that we can put
any type II solution A = [a;;] of order v = n* + n + 1 for the finite
projective plane case of order » into a form where a,;, = 0, a;,, = 1 for
2=1=v, a;=1 for =2 (mod ») and a,; =0 for j == 2 (mod #)
where 2 < j < v, and where the remaining entries form a submatrix
C of order v — 1 = n(n + 1) which has % 1’s and #* 0’s in each of
the # + 1 columns under a 1 in row 1 of A and which satisfies the
matrix equation CC” = C*C = nl. The constructions given in [11]
and [14] have C in the form C=A4,+ A4, + .-+ + A,, where this
direct sum contains A,, of order n, n + 1 times and where A4, has
all entries in column 1 equal to 1 and satisfies the matrix equation
A, A% = nl. These conditions on A, are sufficient for the construction
of a type II solution for order #. We shall confine ourselves here to
this form of type II solution, This restriction reduces the construc-
tion of a type II solution A of order #* + = -+ 1 to that of an integral
matrix A, of order n satisfying the above conditions. Type II solu-
tions need not, however, be of this direct sum form to within permu-
tations of rows and columns of A. This can be seen from the following
example for n = 4. Here the entries in the blank parts of A are 0’s.
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L 0 0 ot 0 0 Ot 0 0 01 0 0 OL 0 0 O
1M1 1 1-1
1M1 1-1 1
11 —1 1-1
11 —1 1 1
1 11t 1
1 111
1 1-1 1-1
1 1-1 ~1 1
1 11t 1
A=1 —1-11 1
1 1-1 1-1
1 1-1 ~1 1
1 111 1
1 1211 1
1 1-1 1-1
1 1-1 ~1 1
1 1 11 1
1 111 1
1 1-1 1 1
1 1-1-1-1

Let K be a skew-Hadamard design incidence matrix of order
=3 (mod4), Here v=q=4m —1, k=2m — 1, x = m — 1, where
m =1 is an integer,

3.1) KK* = KK = mI + (m — 1)J ,
and
3.2) K+ Kr=J—1.

We obtain from K a matrix K(¢, u, ) by substituting ¢ for each of
the main diagonal 0’s, w for each of the remaining 0’s and z for
each of the 1’s. From (3.1) and (3.2), any two rows of K(t, u, x) can
be schematically represented as

E, Uy Uy ooy Uy WUy =00y Uy Ty oo
x’f;,x’...’x’u’... Ly oo, X, Uy ooy U
~—— ———— ———— ————

m—1 m—1 m-—1 m

’u7
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where there are 4m — 1 entries in each row, 2m — 1 each of w’s and
’s. The inner product of a row of K(t, u, x) with itself is thus

(3.9) £ 4 (@m — 1)@ + u) = & + -;—(q — D@+ w) .
Also, the inner product of two distinet rows of K(¢, u, ) is

3.4) tx 4+ u) + (m — D)(x* + v?) + 2m — 1)au
— t@ + u) + %(q — V(@ + w)? — %(xw w) .

We now form Y = |y,;;] = K(¢t,, u,, «,) and Z = [z,;] = K(¢,, %, ©,) of order
¢q and then form

3.5) N:[ Y Z J .
7T YT
We then set
(3.6) wzt?—l—t§+—;—(q—1)(x?+uf+x§+u§).

LEMMA 3.1. The matrixz equation
3.7 NN” = wl
18 satisfied if and only if

@8 w=[t+ @D+ w| + [t L@— D+ )]

Proof. By (3.5) we have
3.9) NNT — [YYT + ZZ*, ZY - YZ J _
ZYy — YZ)", Y'Y + Z"Z

Since, by (3.1), K is a normal matrix, the statements about inner
product values of K(t, u, x) are true when the word row(s) is replaced
by column(s); hence K(¢, u, ) is normal whence Y and Z are normal or

(3.10) Y'Y =YY" and Z*'Z=77Z".
Now

Y=tl+ 2K+ u(J— K)—ul
= (tl — u)I + (2, — u) K + uJ y

and similarly
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Z = (by — )] + (2, — w) K + ud .
Since I commutes with both K and J and
KJ=JK=(2m — 1)J,

i.e., K commutes with J, ¥ commutes with Z so that

(3.11) ZY —YZ=0.
Then by (3.10) and (3.11), (3.9) becomes
(3.12) NN* = (YY" + ZZ*) + (YY" + ZZ") .

The diagonal entries of NN’ are, by (3.3) and (3.12),
(3.13) o+ (g~ Dot ot ) = w0,

and the nondiagonal entries of the direect summands in (3.12) are, by
(3.4),

B14) b + w) + by, + w) + %(q — D@, + w) + (@ + )]
—%(mi+u§+x3+u§)=y.

We note that (3.7) is satisfied if and only if y = 0. Now solving
(3.14) for (x} + u} + x} + %})/2 and substituting the result into (3.13)
we obtain

(3.15) [t + @~ Ve +w)]
[ttt De W] - @-Dy=w.

Hence by (3.13), (3.14), and (3.15), we see that (3.7) is true if and
only if (3.8) is.

We now define the matrices K, = (r + 2)I/2 — J of even order
r, F, of size » X 2 consisting entirely of 1’s, and G, of size » X 2
whose first column consists entirely of 1’s and whose second column
consists entirely of — 1’s. In the constructions which follow we shall
be taking ¢, = (» + 2)/2 and z, + u, = 2. We then note that

3.16) F.FT + E,E — GG + E,EF — [% r + 2) ]21 — ¢,

B.17) F.F’ +2E, = G,G? + 2B, = (r + 2)] = (v, + u)t.I

and
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(3.18) F.GI =G FI=0.

We substitute for the entries y;; in Y and Y* the matrix E, and for
all other entries v,;;, ¢ # j, the matrix y;;I of order » to obtain the
matrices Y, and YZ, respectively, of order »q, and substitute for the
entries z;; in Z and Z* the matrix z;; I of order » to obtain the
matrices Z, and ZZ, respectively, also of order rq. These matrices
will appear in the constructions which follow, bordered by the matrices
F,, and G,,.

We can now obtain two existence theorems for type II solutions
to the incidence equation for finite projective plane cases of orders
n = 2 (mod 4). After each one are theorems which cover the various
cases of the theorem,

THEOREM 3.2. Let (3.8) be satisfied in integers t,, t,, Uy, Uy, X,
and x, where ¢ = 3 (mod 4) s the order of a skew-Hadamard design
incidence matrixz and w is defined in (3.6), and where x, + u, = 2
and t, = (r + 2)/2 and w = 2rq + 2 for the positive even integer r.
Then we can construct a type II solution to the imcidence equation
for the finite projective plane case of order n = 2rq + 2.

Proof. We have

N:LY Z} Y=1lyl, Z=lzi,

zt Yr
where
(3.19) vi=t= 30+ 2),
Yi+ VY=o +u=2; 1=i=zq, 1=j=q, 1#7,
and
(3.20) NN? = (2rq + 2)I .

Since (3.8) is satisfied we have

2 2
G2 [Fr+2+@-D]+[t+c@—De+w|=2m+2,
or

lo— o] + [t + s @~ D+ w)] = 2.

Since ¢, 7/2, t,, (¢ —1)/2, x,, and wu, are integers this means that
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(3.22) q~%r=en t2+%<q—1>(wz+u2>=s2; e, &=1, —1.

We form two matrices U and V of size 2 X rq according to the values
of ¢, and ¢, as follows:

U vV
S I | T— 1. —17 .
@2 | T DT i asast

- 1..e. 1 Co1eee 17

1 1 1 1 if ¢=¢=-—1.
e leee—17 [ 1.-- 17
1o —1 1 —1 if e=—6&=1.
ro1.e.e. 1 f—1.e. —17 .

1 1 1 1 if ¢,=—¢=—1.

Finally, we construct A, of order n = 2rq + 2:

1 1
1 -1 U v
(3.24) A, =
F’rq Y* Z*
Grq - Zg: Yﬂ{'

By (3.23) the first two rows of A, are orthogonal and have self inner
products equal to 2rq + 2 = n. Since the row and column sums of
Y, are ¢ — r/2 and those of Z, are ¢, + (¢ — 1)(x, + u,)/2, we have
by (3.22) and (3.23) that rows one and two are orthogonal to all the
other rows of A,. We now look upon the submatrix of A, below row
2 and to the right of F,, and G,, as a matrix with the matrix entries
E., wl, «]I, tI, w,lI, and x,I, all of order r. These matrices naturally
divide the entire submatrix of A, below 2 into »-row blocks. Since
these matrices commute with one another they behave multiplicatively
among themselves as scalars, Thus (3.16), (3.19) and (3.20) imply that
the inner product of an r-row block with itself is (2rq + 2)I = nl of
order 7, (3.17), (3.19) and (3.20) imply that any two ~-row blocks
intersecting either F,, or G,, are orthogonal, and (3.18) and (3.20)
imply that any r-row block intersecting F,, is orthogonal to any 7-
row block intersecting G,,. Hence A,AZ = nI, and since the first
column of A, consists entirely of 1’s we see that we have a type II
solution to the incidence equation for the finite projective plane case
of order n = 2rq + 2.

Letting ¢ = x, + 4, and combining (3.22) with (3.6), noting that
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t,=(r+2)2=q—¢ + 1, we have
2
(3.25) lg— e +1F + e — 2 — 1]

+ %(g — et + 2 — 2) + 22+ (¢ — )]

=2¢-2(¢ —e)+ 2,

or
1 2 2
—&c(g — 1) + —4—0(q —1)
2
+ L@ = D26~ 1+ 2o — Lo + Lot 2]
=3¢  — 26, + 2, —2¢ — 1
= [8¢ — (2¢, — D](¢ — 1),
or
1 2 2 1 2 1 2
—ae+ —(g— 1) + @ — 1+ (o — o) + Fe 1
2 2 4
=39 —2¢ + 1,
whence
(3.26) (12 — ¢¥)q + 4e,c — 8¢, = (2w, — 2)* + (2w, — ¢)*.
By (3.26)

(12 — ¢®)q + 4dec — 8, = 0,
and since ¢ = 3,
(3.27) ¢ g 4 oqp By 4136
q q ¢ q 9
Since ¢ is an integer we can readily conclude that

(3.28) le] =4,

We let @ = 2x, — 2 and b = 2%, — ¢. Since ¢ = 4m — 1, where m > 0
is an integer, we have from (3.26) that

(3.29) (12 —¢)(4m — 1) + dec — 8¢, = a* + b* .

Now suppose for given values of ¢, =1, — 1, &, =1, — 1, and ¢ that
(3.29) has a solution in integers a and b. If ¢ is even the left side
of (8.29) is divisible by 4 whence ¢ and b must both be even, while
if ¢ is odd the left side of (3.29) is odd whence one of these integers,
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say a, is even while the other, b, is odd. So in either case we can
solve the equations ¢ = 22, — 2 and b = 2x, — ¢ for integral values of
x, and x,., Thus we have a solution to (3.26) in integers z,, x,, and c.
These values then determine the values #, =2 — 2, and %, = ¢ — ..
Then taking ¢, = q —¢, + 1, t,=¢, — (¢ — 1)¢/2, and » = 2(¢ — ¢,) and
noting that (3.25) is equivalent to (3.26) we have by (3.25) that

B+ (- Dl +ul+ o+ ull2=2rq+2=w.

Then since (3.21) is equivalent to (3.22) and (3.22) holds we have by
(3.21) that

[6: 4+ (¢ — D@+ w)/2]° + [t + (¢ — D)@, + u)/2]" = 2rq + 2 = w

where ¢, = (r +2)/2. So if ¢g=4m —1 is the order of a skew-
Hadamard design incidence matrix, the conditions of Theorem 3.2 are
satisfied and we can construct a type II solution according to this
theorem. Now in deciding whether or not (3.29) has a solution in
integers o and b we have, by (3.28), nine values of &,c to consider
for each of the values ¢, =1, — 1. We take the nine cases for ¢, = 1.
Case 1. eec=4: — 16m + 12 = a* + b* impossible since
— 16m + 12 < 0 for m > 0.
Case 2. ec=38: 12m + 1 = a* + b* possible since, e.g.,
12(1) + 1 =13 = 3* + 2*, Here 3¢ + 4 = a* + b
Case 3. ec=2: 84dm —1)=a*+b*or 4m — 1 =a? + b}, a,, b,
integers, impossible since 4m — 1 = 3 (mod 4).
Case 4. ec=1: 44m — 15 = a* + b, possible since, e.g.,
44(1) — 15 =29 =5 4 2. Here 11¢ — 4 = a* + b
Case 5. ec—0: 48m —20=a*+b* or 12m — 5 =a? + b}, a,, b,
integers, impossible since 12m — 5 = 3 (mod 4).
Case 6. ec=—1: 44m — 23 = a* + b*, possible since, e.g.,
44(2) — 23 = 65 = 8 + 1°. Here 1l1¢ — 12 = a* + D",
Case 7. ec=—2: 32m —24=qa*+ b*ordm — 3 = a? + b}, a,b,
integers, possible since, e.g.,
42) —3=5=2"4+1". Here 8¢ — 16 = a* + b* or
qg—2=ai+bi.

Case 8. ec=—3: 12m — 23 = a* + b% possible since, e.g.,
12(3) — 23 = 13 = 3* + 2°, Here 3¢ — 20 = a* + b,
Case 9, &c = —4: —16m — 20 = a* + b*, impossible since

— 16m — 20 < 0 for m > 0.

Now when ¢, =1 we have = 2(¢ — 1), hence n = 4¢* — 4¢ + 2 =
(2¢g — 1)* + 1. So by Theorem 3.2 we have the following result.

THEOREM 3.3. There exists a type II solution to the inmcidence
equation for the finite projective plane case of order n = (2¢ — 1)* +1
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whenever q ts the order of a skew-Hadamard destgn incidence matrix
and any of the following expressions is the sum of two wniegral
squares: 3q + 4, 11q — 4, 11q — 12, ¢ — 2, 3q — 20.

When ¢, = —1 we have = = 2(¢ + 1) hence n = 4¢* + 49 + 2 =
(29 + 1)* + 1. Analyzing this case as was done above for ¢, =1, we
have by Theorem 3.2 the corresponding result:

THEOREM 3.4. There exists a type II solution to the imcidence
equation for the finite projective plane case of order n = (2¢ + 1)* + 1
whenever q ts the order of a skew-Hadamard design incidence matrix
and any of the following expressions i3 the sum of two integral
squares: 3q — 4, 11q + 4, 11q + 12, ¢ + 2, 3¢q + 20.

Both of these theorems yield infinitely many type II solutions.
There exist skew-Hadamard design incidence matrices of orders

g =2%%*(11+1)—-1=38.2% -1
and

G =243 +1) —1=11.2% — 1

for each integer d = 1. Then 3¢, + 4= (3-2%* + 1% and 1l¢, + 12 =
(11.29* 4 1%, The first five orders for which each of these theorems
yields a type II solution correspond to ¢ = 3,7, 11,15, and 19 and are
n = 26, 170, 442, 842, and 1370, respectively, by Theorem 3.3, and
% = 50, 226, 530, 962, and 1522, respectively, by Theorem 3.4. As an
example we construct A,. For =26 we have ¢ =38 and ¢, =1
hence r = 4 whence ¢, = 3. Now by case 2 above, ¢c¢c = 3 and

3¢ +4=13=2"+ 3*= (2, — 2)* + (2x, — ¢)*.

We take 2z, —2 =2 or 2, = 2 and 2z, — ¢ = 3. Letting &, =1, we
have ¢ =38 whence 2,=8 and ¢, = — 2. Then u, = u, = 0. Now
E,=3I —J of order 4 and since ¢, = ¢, = 1,

—1.ee. —1 — 1. —1
U = d =
[ 1-.-.. J and ¥ [_1..._1]
of size 2 x 12, The matrices F, and G, are of size 4 X 2 and a skew-
Hadamard design incidence matrix of order 3 is

0 1 0
0 0 1
1 0 0

Hence we have
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1 1| —1 «.. —1 -1 e+ —1 )
1 —1 1 -1 .. =1
1 1|8I—J 2oI 0 —2f 81 0
o : 0 8I—J 2I 0 —2I 3I
26 —
1 1| er o0 8I—J| 30 o —aI
1 —1| 2f o0 —8I(8I—J 0 oI
: —3l 2 0 o 3I—J 0
1 —1 0 —3I 2of 0 2I 3I—J

The second existence theorem for type II solutions is the follow-
ing one.

Theorem 3.5. Let (3.8) be satisfied in integers t,, t,, Ui, Uy &y,
and x, where q¢ = 3 (mod 4) ¢s the order of a skew-Hadamard design
inecidence matriez and w is defined in (3.6), and where x, + U, = 2
and t, = (r + 2)/2 and w = 2rq + 1 for the positive even integer 7.
Then we can construct a type II solution to the imcidence equation
for the finite projective plane case of order n = 4rq + 2.

Proof. We have

Y

— Z7 Y”
where
(3.30) yii:tlz—;—(r+2),
Yi+yp=o+u=2; 1=i1=q, 1=j=q, 1+#7,
and
(3.31) NNT = (2rq + DI .

Since (3.8) is satisfied we have
632 [$0+2+@-D] +[t+Lt@-De+w]=2rg+1,
or
1P 1 2
[o—tr] + 6+ T@- D@+ w)] = 1.

Since q, 7/2, t,, (¢ — 1)/2, x,, and 4, are integers this means that
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1 1
(3.33) Q—ET:%, t2+—§(q~1)(ft2—|—u2):s2;
S%—}—E;:l; 61,82:1’0’—1.

We form two matrices U and V of size 2 X rq according to the values
of ¢ and ¢, as follows:

U v
— Qe — 9
(3.34) [ 2 0 OV i e=1e=0.
0-.- 0] — 20 — 2
2.. 27 0-- 0 .
0-er 0] ... g Ta=-lea=0.
0-- 0] — 200 =2 .
if ¢=0,¢6=1.
2., 2 | 0-. 0
0--- 0] 2., 2
if =0 6=—1.
— 2. —9 0-.. 0
We set
_ 1 _ 1
F=ttS@—DE+tuw)=2r+g=atr
and

g=t2+§<q—1><x2+uz>=ez.

Then f and ¢ are integers and by (3.8)
(3.35) ffret=w=2rq+1.

Finally, we construct A, of order n = 4rq + 2:

1 1
1 —1 U 1% 0 0
3.36) A, =] T Y. Z.| fl.  gl.
F,, Y., Zo | —fle — gl
G'rq - Zi‘ Y,,I: gI,,q — fI'rq
Grq - Z>T Y: - gIrq fI',-q

By (3.34) the first two rows of A, are orthogonal and have self inner
products equal to 4rq 4+ 2 = n. Since the row and column sums of
Y, are ¢ — r/2 and those of Z, are ¢, + (¢ — 1)(x, + %,)/2, we have
by (38.33) and (3.34) that rows one and two are orthogonal to all
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the other rows of A,. We now look upon the submatrix of A, below
row 2 and to the right of the F,/s and G,/ s as a matrix with the
matrix entries E,, wlI, z.I, t,I, u,I, and x,I, all of order ». These
matrices naturally divide the entire submatrix of A, below row 2 into
r-row blocks. Since these matrices commute with one another they
behave multiplicatively among themselves as scalars. Thus (3.16),
(3.17), (3.30), (3.31), and (3.35) imply that the inner product of an »-
row block with itself is (4rq + 2)I = nl of order r and that any two
r-row blocks both intersecting F,,’s or both intersecting G,,/’s are
orthogonal, and (3.18) and (3.31) imply that any r-row block intersecting
an F,, is orthogonal to any 7-row block intersecting a G,,. Hence
A,A”Y = nl, and since the first column of A, consists entirely of 1’s
we see that we have a type II solution to the incidence equation for
the finite projective plane case of order n = 4rq + 2.

Letting ¢ = 2, + %, and combining (3.33) with (3.6), noting that
t,=(r+2)/2=q—¢ + 1, we have

@30 fo—a+ 1+ [a— L@—e]

+ %(q — Dl + (@ — )+ 2+ (e — )]

=2q-2(q—¢)+1,

which, because of (3.33), again yields (3.26). Since the argument from
(3.26) to (3.28) depends only on |¢,]|, |¢,| =1 and ¢ = 3, and since this
is true here too, we obtain (3.28). Again, letting a = 22z, — 2,0 =
2x, — ¢, and ¢ = 4m — 1, m > 0 an integer, we obtain as before

(3.38) (12 — ) (4m — 1) + 4e,c — 8¢, = @* + b,

where

(3.39) le] =4.

Now suppose for given values of ¢, =1, — 1, e, =00r ¢ =0, &, =1,

— 1 and ¢ that (3.38) has a solution in integers a and b. We can
then show, as we did before, that if ¢ = 4m — 1 is the order of a
skew-Hadamard design incidence matrix, then the conditions of Theorem
3.5 are satisfied and we can construct a type II solution according to
that theorem.

Now in deciding whether or not (3.38) has a solution in integers
a and b we have, by (3.39), five values of |c¢| to consider for each of
the two sets of values ¢, =1, ¢,=0and ¢, =—1, ¢, =0 and nine
values of ¢,c to consider for the value ¢, = 0. We take the five cases
for e, =1, ¢,=0.
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Case 1. |c¢|=4: —16m — 4 = a* + b* impossible since
— 16m — 4 < 0 for m > 0.
Case 2. |c|=38: 12m — 11 = @* + V*, possible since, e.g.,
12(2) — 11 = 13 = 3* + 2’. Here 3¢ — 8 = a® + b°.
Case 3. |c|=2: 32m — 16 =a*+ b>or 2m — 1 =a} + b}, @, b,
integers, possible since, e.g., 2(8) — 1 =5 =2 + 1%,
Here 8¢ —8 =a* + b* or ¢ — 1 = a} + b}, a,, b, integers.
Case 4. |c|=1: 44m — 19 = a* + V*, possible since, e.g.,
44(1) — 19 =25 =5+ 0>. Here 11g — 8 = a* + b°.
Case 5. |c¢|=0: 48m — 20 =a*+ b*or 12m — 5 = a} + b}, a,, b,
integers, impossible since 12m — 5 = 3 (mod 4).

Now when ¢, = 1 we have » = 2(¢ — 1), hence n = 8¢* — 8¢ + 2 =
229 — 1)2. So by Theorem 3.5 we have the following result.

THEOREM 3.6. There exists a type II solution to the imcidence
equation for the finite projective plane case of order n = 2(2¢ — 1)
whenever q is the order of a skew-Hadamard design incidence matrix
and any of the following expressions is the sum of two integral
squares: 3q —8, ¢ — 1, 11¢ — 8.

When ¢, = —1 we have » = 2(¢ + 1), hence n = 8¢* + 8¢ + 2 =
2(2¢ + 1)%. Analyzing this case as was done above for ¢ =1, we
have by Theorem 3.5 the corresponding result:

THEOREM 3.7. There exists a type II solution to the inmcidence
equation for the finite projective plame case of order m = 2(2q + 1)
whenever q 1s the order of a skew-Hadamard design incidence
matrix and any of the following expressions ts the sum of two
integral squares: 3q + 8, ¢ + 1, 11q + 8.

When ¢, =0 we have r = 2¢q, hence n =8¢*+ 2= (2¢ — 1)* +
(29 + 1)*. Analyzing this case as was done for Theorem 3.3 we have
by Theorem 3.5 the following result.

THEOREM 3.8. There exists a type II solution to the tncidence
equation for the finite projective plane case of order m = (2¢ — 1)* -+
(2q + 1)* whenever q tis the order of a skew-Hadamard design inci-
dence matriz and any of the following expressions is the sum of
two integral squares: 3q + 12, q¢ + 1, 11q + 4, 3q, 11qg — 4, ¢q —1,
3q — 12,

All three theorems yield infinitely many type II solutions. There
exist skew-Hadamard design incidence matrices of orders
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¢, =4(8*%*+ 1) —1=4.3%"*4+3 and ¢, =2 — 1 for each integer
d=1. Then 8¢, —8=(2:83%*+ 1% and ¢, +1=2% 4 0°. The first
four orders for which each of these theorems yields a type II solution
correspond to ¢ = 8, 7, 11, and 15 and are % = 50, 338, 882, and 1682,
respectively, by Theorem 3.6, n = 98, 450, 1058, and 1922, respectively,
by Theorem 3.7, and n = 74, 394, 970, and 1802, respectively, by
Theorem 3.8. As an example we construct A4,,. For n = 50 we have

q=3,¢ =1, and &, = 0 hence » = 4 whence ¢, = 3. Now by case 4
above, |¢| =1 and

11g — 8 = 25 = 0 + 5° = (21, — 2)° + (2, — ¢)* .

We take 22, —2=0 or 2, =1 and 2z, — ¢ = 5. Letting ¢ =1 we
havex,=3and ¢,=— 1, Thenuw,=1andu,=—2, f=5 and g = 0.
Now E, =3I — J of order 4 and since ¢, =1 and ¢, = 0,

— Qe —9 .
U = and V = 0 0 y
0-.- 0 N R—
of size 2 x 12, The matrices F, and G, are of size 4 x 2, and a skew-
Hadamard design incidence matrix of order 3 is

0 1 0
0 0 1
1 0 0
Hence we have
1 1] -2-..-2 0 0
1-1 0 0 X2 —2 0 0

1 1(3I-J I I —-I 3 -—-2r| 51 0 O
I 31-J I |-2I -I 3I 0 5I 0 0
1 1| 1 I 3I-J| 31 -—-2I —I 0 o0 51

1 18[-J I I —-I 381 -—-2I|-5I 0 O
Ao = I 38-J I |-2I —-I 3I 0 —5I 0 0
* 1 1} I I 3I-J| 31 -—-2I -—1I 0 0 -—5I

1 -1 I 2 =-3I|3I-J I I -5 0 O
=3I I 21 I 38I-J 1 0 0 -5I 0

1 -1y 2 -3 I I I 38I-J 0 0 -=5I
1 -1} I 2 -8I|38I-J I I 5 0 0
=31 I 21 I 38I-J I 0 0 58I O
1 -1 2 -3 I I I 3I-J 0 0 51

The above constructions are all based on the existence of a skew-
Hadamard design incidence matrix of a certain order g = 3 (mod 4).
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However, let us examine these constructions to see whether other
constructions like these are possible. As a very simple possibility, let
us consider replacing the skew-Hadamard design incidence matrix by
the matrix [0] of order 1. Here corresponding to (3.5) we have

¢ ¢
N = 1 2 ’
_tz tl

(3.40) w=E+ 8

and setting

we automatically have
(3.41) NN7* = wl

Let us consider the form of construction in Theorem 3.2. We let
(3.40) be satisfied in integers ¢, = (r + 2)/2, ¢,, and w = 2» + 2, for
the positive even integer . Then

—ill—(r+2)2+t3:2¢"+2,

or

_[11_(1»—2)2“?:2,

hence

l1-=r=¢, bh=6&; &,&=1 —1.
2

For ¢, =1 we have » = 0, hence we get no nontrivial construction.
For ¢, =—1 we obtain » =4 whence » = w = 10. We have E, =
3I — J of order 4 and F, and G,, as defined previously, of size 4 X 2.
Then corresponding to ¢, = 1, — 1 we obtain by the form of construc-
tion in Theorem 3.2,

1 ny1111y-1-1-1-1f |1 1 1 1 1 1j1111
1 -1j1r111y »r 1 1 1} {1 -1|—-1-1-1-1f1111
1 1 1 1
1 1 1 1
1 1 1 1
1 -1 1 -1
1 -1 —I 3I-J 1 -1 I 3I—-J
1 -1 1 -1
1 -1 1 -1
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respectively, each of which satisfy A, Af; = 10I. These are essentially
the same as the A,, constructed by Hall and Ryser [11]. Now let us
consider the form of construction in Theorem 3.5. We let (3.40) be
satisfied in integers ¢, = (r + 2)/2, ¢,, and w = 2r + 1, for the posi-
tive even integer r. Then

~ii_(rjuz)?juzs§:2¢+1,
or
1 T
Z(’i"——z) +t2—1,
hence
1—%10:51, t,=¢6; +&=1; &,¢6=1,0, —1.
For ¢, =1 we again get no nontrivial construction. For ¢ =0 we
obtain = 2 whence n = 2w = 10, We have E, = 2] — J of order 2
and F, and G,, as defined previously, of size 2 X 2. Then correspond-

ing tog,=1, —1 we have f=2 and g =1, — 1, respectively, and
we obtain by the form of construction in Theorem 3.5

1 1 0 0 —2 -2 0 )
1 —1 2 2 0 0
1 1 1 -1 1 0 2 0 1 0
1 1] -1 1 o 1 0 2 0 1
4|1 1 1 -1 1 0| -2 0 -1 0
w=l1 1| -1 1 o0 1 0 -2 0 —1 |’
1 —1| -1 o0 1 -1 1 0 —2 0
1 —1 0 -1 —1 1 0 1 0 —2
1 1| -1 0 1 —1] -1 0 2 0
1 —1 0 —1 —1 1 0 -1 0 2
.
11 0o 0 2 2 0
1 —1| —2 =2 0 0
11 1 -1 —1 0 2 0 —1 0
1 1| -1 1 0 -1 0 2 0 —1
11 1 -1 -1 0] —2 o0 1 o0
1 1] -1 1 o0 -1 0 -2 0 1
1 -1 1 0 1 —-1] -1 0 —2 0
1 —1 0 1 -1 1 0 -1 0 —2
1 -1 1 0 1 —1 1 0 2 0
1 —1 0 1 -1 1 0 1 o0 2
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respectively, each of which satisfy A,,A% = 10I. These, however, are
essentially different from the A,’s previously exhibited, This shows
that type II solutions of the direct sum type are not necessarily unique
to within permutations of the rows and columns of A, and the multipli-
cation of the columns of A, by —1. Finally, for ¢, = — 1, ¢, = 0, we
obtain » = 4 whence n = 2w = 18, We have E, =3I — J of order 4
and F, and G,, as previously defined, of size 4 x 2. Here f=38 and
9= 0. We obtain by the form of construction in Theorem 3.5

1 1 2...2 0.--:0

1 -1 0.--0 2...2 0 0

1 1 31— J 0 31 0
A18:

1 1 3 —J 0 —3I 0

1 -1 0 3l —J 0 —3I

1 -1 0 3I—J 0 31

which satisfies A,;4,; = 181. Hence, summarizing, we have the follow-
ing result.

THEOREM 3.9. There exists a type II solution to the incidence
equation for the finite projective plane case orders m = 10, 18,

The author wishes to express his gratitude to Professor H. J. Ryser
for his inspiration and his valuable suggestions concerning this work.
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