Pacific Journal of Mathematics

Functional representation of algebraic intervals.

Robert E. Jamison

Article information

Source
Pacific J. Math., Volume 53, Number 2 (1974), 399-423.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102911609

Mathematical Reviews number (MathSciNet)
MR0365145

Zentralblatt MATH identifier
0297.46035

Subjects
Primary: 46H05: General theory of topological algebras
Secondary: 46E15: Banach spaces of continuous, differentiable or analytic functions

Citation

Jamison, Robert E. Functional representation of algebraic intervals. Pacific J. Math. 53 (1974), no. 2, 399--423. https://projecteuclid.org/euclid.pjm/1102911609


Export citation

References

  • [1] W. G. Bade, The Banach space C{S), Arhus University Lecture Note Series, No. 26, 1971.
  • [2] T. Dai, On some special classes of partiallyordered linear algebras, J. of Math. Anal, and Appl., 40 (1972), 649-682.
  • [3] N. Dunford and J. T. Schwartz, Linear Operators (I), Interscience, New York, 1966.
  • [4] J. Eckhoff, Der Satz von Randon in konvexen ProductstrukturenI-II, Monatsh. Math., 72 (1968), 303-314; 73 (1969), 7-30.
  • [5] L. Fuchs, PartiallyOrdered Algebraic Systems, Pergamon Press, Oxford, 1963.
  • [6] L. Gillman and M. Jerison, Rings of ContinuousFunctions,Van Nostrand, Princeton, 1960.
  • [7] E. Hewitt and K. Stromberg, Realand AbstractAnalysis,Springer-Verlag, New York, 1969.
  • [8] D. Hubert, Grundlagen der Geometric B. G. Teubner, Stuttgart, 1968.
  • [9] R. I. Jewett, A variation on the Stone-Weierstrasstheorem, Amer. Math. Soc, Proceedings, 14 (1963), 690-693.
  • [10] R. V. Kadison, A RepresentationTheorem for Commutative Topological Algebras, Amer. Math. Soc. Memoirs, #7, 1951.
  • [11] I. Kaplansky, Latticesof continuous functionsII, Amer. J. Math., 70 (1948), 626-634.
  • [12] I. Kaplansky, Fields and Rings, Univ. of Chicago Press, Chicago, 1969.
  • [13] J. Kelly and I. Namioka, LinearTopological Spaces, Van Nostrand, Princeton, 1963.
  • [14] J. R. Reay, Caratheodory theorems in convex product structures,Pacific J. Math., 35 (1970), 227-230.
  • [15] C. Rickart, Banach Algebras, Van Nostrand, Princeton, 1963.
  • [16] H. H. Schaefer, Topological Vector Spaces, Springer-Verlag, New York, 1971.
  • [17] M. H. Stone, A general theory of spectra I, PNAS USA, 26 (1940), 280-283.
  • [18] F. A. Valentine, Convex Sets, McGraw-Hill, New York, 1964.
  • [19] J. von Neumann, Probabilisticlogics and the synthesis of organisms from un- realiable components, Automata Studies, Princeton Univ. Press, Princeton, 1956.