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FUNCTIONAL REPRESENTATION OF
ALGEBRAIC INTERVALS

ROBERT E. JAMISON

Motivated by some examples from the study of axiomatic
convexity, we define a class of objects (in real algebras with
1) whose algebraic properties mimic those of the unit interval.
These objects, called intervals, have quite a bit of structure
in themselves. In particular, in a Banach algebra a compact
interval must be finite dimensional. Even more striking is
the main result which shows that any interval satisfying a
very modest boundedness condition is commutative and can be
represented by continuous functions from a compact Hausdorff
space into the unit interval. This leads to a number of
corollaries in analysis and topology.

THEOREM 1. Let M be a linear space of real functions on a set
X, and suppose that any function in M is the difference of two
nonnegative functions in M. If S and T are linear maps from M
to M such that

0=8S(NH=Sf and 0T(N)=S

for all nonnegative f in M, then S and T commute.

THEOREM 2. Let {a,};-, be a sequence of positive real numbers
such that lim sup (a,)'’™ = . Suppose P is the smallest set of real
polynomials containing 0 and a,x”, for all n, and satisfying

(1) p@)(x)e P if p and q are in P and

(2) —p)+1eP if p is in P.

Then any real polynomial r such that 0 < r(0) <1 is a convex
combination of polynomials in P.

These two seemingly disparate results, as well as a representation
theorem by Stone for partially ordered algebras, follow as natural
corollaries of a general theory to be developed in this paper. This
theory had its origins in an attempt to investigate more general
notions of convexity in real linear spaces, and that setting still seems
to provide the best starting place of the development.

DEFINITION. If A is a ring with 1, then an interval in 4 is a
subset I of A such that

(1) O0el,

(2) 1—wxelif Xel, and
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(383) zyelif x and y belong to I.

If M is a unitary left module over A, then a subset C of M is
I-convex iff xp + (1 — x)q is in C whenever p and ¢ are points in C
and z is in I.

The following properties, which resemble those of usual convex
sets in real vector spaces, can be readily verified for the family of
all I-convex subsets of M:

(1) the arbitrary intersection of I-convex sets is again I-convex,

(2) the union of any chain of I-convex sets is again I-convex,

(3) if C and D are I-convex, then so is C+ D={p+ q:peC
and g€ D},

(4) if Cis I-convex and 7 is an element of A which centralizes
I (i.e., rx = xzr for all « in I), then »C is I-convex,

(5) every submodule of M is I-convex,

(6) every singleton subset of M is I-convex.

Since the ring A is a module over itself, it is natural to ask
whether a given interval I is convex with respect to the convexity
it induces on A. In other words, an interval I is replete provided it
satisfies the condition:

(4) te+ (1 —t)yelif t,x, and y are in I.

Although many common examples of intervals are replete, property
(4) does not follow in general from the defining properties of an
interval. As an illustration, let J; consist of 0 and 1 together with
all rational numbers of the form a/6 where » is a positive integer
and 0 < a < 6" and a = =1 mod 6. Then J; is an (algebraic) interval
of rational numbers, but it is not replete since

(1/6)(1/6) + (1 — 1/6)(5/6) = 26/36 ,

which is not in J;.

The product convexity defined on R* by J. Eckhoff [4] provides
an important example of an interval convexity. If R" is written as
a direct sum of lower dimensional spaces, R* = R" + R™ + -.- + R",
then the product convexity is obtained by taking cartesian products
of usual convex sets from each of the direct summands. Now R
may be regarded as a module over its ring of linear endomorphisms
E(R™). If we let I consist of all linear combinations in E(R") of the
form

MP 4 MNP+ oo + NP

where P, is the canonical projection of R™ onto R" and 0 < ), =< 1,
then I is an interval in E(R"). In fact, the Eckhoff product convexity
coincides with the induced I-convexity.

Although many of the combinatorial properties of this product



INTERVAL REPRESENTATION 401

convexity have been studied [4, 14], our interest in intervals will be
primarily algebraic and analytic. One might hope that other inter-
esting convexities might arise from intervals. For example, what
convexities are induced in a Banach space B by norm compact intervals
of bounded linear operators from B to B? As we shall see, there
are in fact very few. The defining conditions for an interval, although
quite simply stated, are extremely powerful. In fact, in a real algebra
with 1 any interval satisfying a modest boundedness condition is
isomorphic to an interval of continuous real functions. The proof of
this fact, together with a sharper structure theorem for compact
intervals in Banach algebras, is the main objective of this investi-
gation.

Throughout the remainder of this paper, A will denote a real
algebra with 1, and, except when explicitly stated to the contrary,
‘convex’ will hereafter refer only to convexity in the usual vector
space sense. Usually the emphasis will fall on convex intervals.
However, this is only a mild restriction, for, as the reader may easily
verify, the convex hull of an interval is again an interval.

ExamMPLES. Some further examples of intervals may be eluci-
dating. ,

(I) If Ais any algebra, the sets I, = {0, 1}, [{x-1: 0= M= 1},
and I, = {r-1:r€ R} are all intervals. In any module M over 4, all
subsets are I,-convex, the I,-convex sets coincide with sets convex in
the usual sense (in M as a real vector space), and the I_-convex sets
are the affine manifolds.

(II) If A is an algebra of real functions on a set X, then the
family of functions in A which map X into [0: 1] is an interval. If
Y is any subset of X, then the family of all functions in A mapping
X into [0:1] and taking only the values 0 and 1 on Y is also an
interval.

(Ila) In the special case where X consists of just two points,
A may be visualized as R* with multiplication and addition defined
coordinatewise. The square {(z, ¥):0 <2 <1 and 0 <y <1} and the
strip {(z, ¥): 0 < y < 1} U {(0, 0), (1, 1)} are two easily pictured examples
that the reader may wish to keep in mind when encountering defini-
tions and constructions introduced later.

(III) Let M be a linear space of real functions on a set X, and
let A be an algebra of linear transformations of M into M. The
family of all transformations T in A such that

0=T(f)< f for all fin M with f =0

constitutes an interval. The ordering here is, of course, pointwise.
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(IV) Suppose that A is a partially ordered algebra [cf. 5, p. 105].
That is, A possesses a partial order < such that

(1) 0=)-1 for all positive real A,

(2) 2=y implies  + 2 <y + z for all x,y,z in A, and

(3) z =y implies vz < yz and zx < zy for all =, ¥,z in A with
0z
Then the set of all x in A such that 0 <« <1 forms an interval.

(V) If A is a commutative algebra, the set of all idempotents
in A is an interval.

As our investigation will center on intervals bounded in some
way, the complex numbers will play no prominent role for the following
reason: Any bounded interval I in the complex field is, in fact, contained
in the real unit interval. Clearly, if I is bounded, the absolute value
of any element of I can be at most 1. Now if z is any complex
number with Re(z) <0, then |1 — 2| >1, so I can contain no points
in the open left half-plane. But if z is any complex number with
Im (2) = 0, some power of z lies in the left half-plane, so all numbers
in I must be real.

ExamPLE (VI). Let A be the Banach algebra H._(U) of all com-
plex functions holomorphic and bounded on the open disc. If I is a
bounded interval in A, each point evaluation map sends I into a
bounded interval in the complex plane, and hence into the real unit
interval. Since a real-valued holomorphic map must be constant, I
must consist of constant functions with values in [0: 1].

The main result in historical perspective. As the means to a
new proof of the Stone-Weierstrass theorem, R. I. Jewett obtained
in a 1963 paper several beautiful results for intervals of continuous
functions [9, 7, p. 101]. (It should perhaps be noted that interest in
intervals dates back at least to von Neumann [19, p. 93], who pointed
out their connection with the theory of automata.) One consequence
of Jewett’s work is stated below.

THEOREM. (Jewett [9].) Suppose X is a compact Hausdorf
space and I is an interval of continuous functions from X into
[0:1]). If the functions in I separate the points of X, and I s
uniformly closed, and I contains the constant function 1/2, then I
comsists of all continuous functions from X into [0; 1].

There is also a theorem of Stone which has a connection with
intervals. Recall that a partially ordered vector space Vis archimedean
provided that, for any « and v in V, nae < y for all positive integers
n implies © < 0. (This is equivalent to the requirement that the posi-
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tive cone P = {xe V:x = 0} be linearly closed.) Also, recall that an
element e of V is an order unit provided for each x in V there is
some integer m with x < me. [16, p. 205].

THEOREM. (Stone [17].) If A is an archimedean partially ordered
real algebra with 1 and 1 is an order unit, them A is isomorphic to
an algebra of continuous functions on a compact Hausdorff space.

Note that the commutativity of A is a conclusion rather than
a hypothesis. In fact, in the version of this theorem provided in
[10, p. 7], even the associativity of A is not assumed! Another proof
is also available in Schaefer’s book [16, p. 255]. (Actually, it might
be appropriate to call the above result the Schaefer-Stone theorem,
since it seems Stone never published a proof and the proof given by
Schaefer in [16] is simpler and more general than what Stone suggests
in [17].)

It should be noted in passing that Stone’s theorem is but one
of several results which conclude commutativity from order properties.
One of the first is due to David Hilbert and appears in his celebrated
Grundlagen der Geometrie [8, p. 105]. Some others may be found
in [5, p. 145]. More recently, there is a commutativity result due
to Dai and DeMarr [2] which, as will be shown later, actually follows
rather easily from the Schaefer-Stone theorem.

INTERVAL REPRESENTATION THEOREM. Suppose I is a convex
mterval which gemerates the algebra A. If I is limearly closed and
bounded (i.e., the intersection of I with any line in A4 is a closed
segment), then A is isomorphic to an algebra of continuous functions
on a compact Hausdorff space X and I consists of all functions in
a mapping X into [0: 1].

One might attempt to apply Stone’s theorem to prove this by
using the cone P = U, nl to order A. The hypotheses of Stone’s
theorem are easily verified — except the archimedean requirement.
The archimedean condition is, in fact, satisfied, but this is by no
means obvious a priori. It seems to rely on a rather subtle interplay
between the geometry of the interval and its algebraic properties.
A linearly bounded interval actually looks like a square or higher
dimensional cube (see Example Ila). But it is not inconceivable that
an interval might look like a circle, centered at 1/2, with 0 and 1 in
the circumference. In such a case, the cone generated would not be
linearly closed and its linear closure would not be proper (since it
would contain the tangent to the circle at 0). Ruling out the possi-
bility of curvature of the boundary is the principal task in proving
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the representation theorem. Of course, even if one could use Stone’s
theorem immediately, one would not know that the order interval
{x: 0 =< x £ 1} coincided with the original interval I. Thus one would
have to resort to different techniques to prove some analogue of
Jewett’s theorem for this case. At present, the difficulties concomi-
tant with the possible curvature of an interval seem to be so great
that a new approach, not utilizing the Schaefer-Stone theorem,
appears necessary to prove the Interval Representation Theorem.

As with all representation theorems of this ilk, the compact
Hausdorff space X turns out to consist of multiplicative linear func-
tionals on the algebra. There seem to be two general methods for
obtaining these homomorphisms. One way is to examine an appro-
priately defined convex set of .affine functions: in propitious circum-
stances the extreme points are multiplicative and exist in abundance
[1, 10, 16]. The other attack, to be used here, is more internal. It
involves the production of an ample supply of idempotents and maximal
ideals. This has the advantage that it actually displays what is going
on in the algebra.

PROPOSITION 1. Let I be a convex interal im an algebra A.
Then

(a) every extremepoint of I is an idempotent,

(b) an idempotent ¢ in I is extreme iff 0 is an extremepoint
of I,

(¢) of I contains mo montrivial subspace of A, them 0 is an
extremepoint of I.

Proof. (a) Let ¢ be an extremepoint of I. Then 2t — t* =
1— 1 —1¢t)isin I, and ¢* is in I, and

1 1
t==(02t—-¢ — 1,
2( )+2

so t* = t.

(b) Suppose first that 0 is an extremepoint and that e + 2 and
e — h are in I for some h. We must show that z = 0. The roles of
h and —h are symmetric, so whatever we prove for & is also valid
for —h by a symmetric argument. First e(1 — (¢ —h) =e — & +
eh = eh, since e = ¢®. Thus ek is in I. Similarly —eh isin I. Since
0 is extreme by hypothesis, ek = 0. Analogous treatment of (1 — (e —
h))e = he proves that he = 0. Next

(e+h(1—(—h)=e¢e—¢+eh+h—het+hR=h+h.

Thus % + k% is in I, but also
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(e+nm(1l—(e+h)=e—¢e —ech+h—he—h =h—h*.

So A — h*is in I. Since I is convex, we get
1 1

h==Mh+nr)+=0—n

L+ B+ (= 1Y)

in I. Symmetrically, —#4 is in I. Again, since 0 is an extremepoint,
we must conclude that - = 0.

For the converse, suppose that ¢ is an extreme idempotent of I
and both # and —#% are in I. Again we must prove that ~# = 0. Here
¢+ eh=e(l—(—h)) and ¢ —eh =¢(l — h) are in I. Since e is
extreme, we must have eh = —eh = 0. Now

1-[l—e)1+h]=e—h+eh=e—h
and
1-[A—e—R)]=e¢e+h—c¢ch=¢e¢+h

are both in I. Therefore, the extremeness of e¢ forces » = 0.

(c) Again we must show that 0 is an extremepoint of I, so
suppose & and —h are both in I for some k. Then % + A* = k(1 —
(—h) isin I asis 2h — B* =1 — (1 — h)’. By convexity of I, we find
that

3=
2

|

(2h — h?) + %(h + )

is in I. Symmetrically, 3/2(—h) is also in I. Thus we may repeat
the argument ad infinitum to get the whole line thru % and 0 in I.
But then this line is a subspace contained in I, so # must in fact be 0.

PropoOSITION 2. If I is a interval in an algebra A and I con-
tains no rays from 0 (i.e., nx €I for all positive integers = implies
z = 0), then

(a) I contains mo monzero milpotents,

(b) if e is an idempotent in I, then ex = xe for all x in I.

Proof. (a) Suppose s is a nonzero nilpotent in I. Then for
some k> 0,s* =0, and s*** = 0. Let t =s*. Then t = 0,tcl, and
t* = 0. Now observe that nt =1 — (1 -- £)" is in I for all n, contrary
to our assumption.

(b) Consider the element ex — exe = ex(l — ¢), which is in I.
Then, since e is idempotent,

(ex — exe) = 0.
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By part (a), this forces ex — exe = 0, so ex = exe. Now a similar
treatment of we — exe = (1 — e)xe, which is in I, yields ze = exe.
Hence ex = ze.

We shall mean by a topological algebra an algebra equipped with .
a linear space topology such that, for each p in A, the maps z+—xp |
and z— pxr are continuous. All topologies given consideration are}
assumed to be Hausdorff. By a mormed algebra we shall mean an
algebra equipped with a linear space norm |[|-|| such that ||zy|| =<
lz]] Iy ]| and |[1]] = 1. The standard analysis theorems to be used
are available in such references as [3, 13, 16, 18].

It is convenient to state here a simple but useful lemma which
seems to be known, in various guises, as a folk theorem. (Note that

the proof does not really require associativity.)

LEMMA A. Let X be a topological space on which a semigroup
operation (x, y)— xy is defined such that, for each q in X, x+— xq
1s continuous. Suppose Y is a subsemigroup of X and that, for each
» in Y, the map x— px is continuwous from X into X. Then

(i) clY is a subsemigroup of X, and

(ii) @f cl Y contains a dense central subset Z, then Y is central
w cl Y and, in particular, Y ts commutative.

Proof. (i) If p and q are in cl Y, there are nets p, and ¢, in
Y converging, respectively, to p and ¢q. Now for fixed 7, p,q is the
limit over » of p,q,, since p, is in Y. Hence each p,q is in ¢l Y, so
taking the limit over v, we get pq in cl Y.

(ii) Let peclY and yc Y. Select a net 2z, in Z with z, con-
verging to p. Then py is the limit of z,y. Since 2, is central, this
is the same as the limit of yz,, which, because y e Y, equals yp.

THEOREM A. If I ¢s a compact convex interval in a locally
convex topological algebra A, then I is commutative. If, in addi-
tion, 0 1s mot a limit point of monzero idempotents, then there is
a finite set {e;}-, of orthogonal idempotents such that I consists of
all points of the form

(*) i M€, where \; € [0:1] for each <.

Proof. Since I is compact, it satisfies the conditions for both
propositions. Hence the set E of idempotents in I coincides with
the set of extreme points of I, and E is central in I. Clearly conv F
is also central in I, and by the Krein-Milman theorem I = cl conv E.
Applying Lemma A with X=A, Y =1, and Z = conv E, we may



INTERVAL REPRESENTATION 407

conclude that I is commutative.

Let us now suppose that 0 is not the limit of nonzero idempotents.
Since E is commutative it can be given the natural partial order:
f=<e iff ¢ =f[7, p. 11]. Let C be a decreasing chain of nonzero
idempotents in I. Directed by the natural partial order, C is a net
and hence has a convergent subnet ¢,—f. For any g in C, ¢, is
eventually less than ¢, so gf = limge, = lime, = f. Thus since each
e, is in C, f*=lime,f = limf =f. Whence f is an idempotent less
than all g in C, and f == 0 by the hypothesis of the theorem. Adducing
Zorn’s lemma, we may conclude that, given any nonzero idempotent
¢ in I, there is a minimal nonzero idempotent f in I with f < e.

We now claim that the set E, of minimal nonzero idempotents
is finite. If not, there would be a net ¢, in FE, converging to some
f with e, = f for all 7. For any chosen ¢, in the net, ¢,/ is the limit
over v of ee,. Since ¢, %= f, eventually e, is different from ¢, But
distinct minimal idempotents are orthogonal, so es, is eventually 0.
Thus e¢,f =0 for each ¢, in the net. Thus f*=lime,f =0. By
Proposition 2a, f is zero, contrary to hypothesis. Hence E, is finite.

Note that if x and ¥ are in I and zy =0, then 2 +y=1—
(1—2)1 —y) is in I. Applying this inductively, we may conclude
that the sum s of the minimal nonzero idempotents is in I. Clearly
s is idempotent. If s = 1, there is an f in FE, less than 1 —s. It
follows from the definition of s that sf=f. But f<1— s means
L —-s)f =f, so f=0, a contradiction. Hence 1 is the sum of the
minimal nonzero idempotents.

For any two idempotents ¢ and f, ¢f < f, so, if f is minimal,
either ¢f = f or ¢f = 0. Thus, for any idempotent ¢ in K, ¢ =¢-1 =
X{fek, f<e}. Whence E is finite. It follows that conv E is already
closed, so I = conv K.

Now, using the facts that any point of I is a convex combina-
tion of idempotents in £ and any idempotent is the sum of minimal
idempotents, it is easy to write any point of I in the form (*), where
{e;}r., = E,. Conversely, the orthogonality of the minimal idempotents
implies that any point of the form (*) is in I.

In a Banach algebra, a nonzero idempotent has norm at least 1,
s0 Theorem A settles the question about convexities induced on a
Banach space B by a compact interval of operators on B. The
idempotents e, are, of course, projections in this case, so B can be
written as the topological sum of their ranges — in analogy to the
Eckhoff convexities in R".

ExampLE (VII). Let A be the algebra of all bounded real func-
tions on [0:1] with the topology of pointwise convergence. The
interval I of all functions from [0: 1] into [0: 1] is a compact convex
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interval in A4, but it is not finite dimensional. Let e, be the charac-
teristic function of (0: 1/n). Each e, is idempotent and lim,_._ e, = 0.

Scholium. Let A be a normed algebra and M the set of all
continuous homomorphisms of A into the complex numbers C. Suppose
I is a norm bounded interval in 4. If ¢ and + belong to the same
connected component of M with respect to the strong (norm) topology
on M, then 4(x) = ¥(x) for all z in I.

Proof. We may suppose that I is convex, since the convex hull
of a bounded interval is again a bounded interval. Now let b be a
bound on the norms of elements of I. We shall show that if ||¢ — v || <
1/b, then ¢(x) = ¥(x) for all « in I. The result will then follow by
a routine connectivity argument.

To check the claim, suppose ¢(p) # (p) for some p in I where
¢ and + are in M. The map x — (¢(x), ¥(x)) is a continuous homo-
morphism of A into C? where addition and multiplication are coordi-
natewise. The image of I under this homomorphism is then a
bounded convex interval J. The closure of J is thus a compact
interval and hence is the convex hull of its idempotents. Since
8(p) #= Y(p), clJ cannot be the segment from (0, 0) to (1, 1); it must
be the square whose vertices are the four idempotents in C® Since
J is dense in this square, for any ¢ > 0, one can find a point x of
I with ¢(x) >1 — ¢ and +(x) < e. Thus

o —vilzlle@ —v@I/lv]l= Q- 29/0.

Since ¢ is arbitrary, this finishes the proof.

ExampLE (VIII). Let X be a compact connected metric space
with metric d. Let Lip (X) denote the space of all real-valued func-
tions on X which satisfy a Lipschitz condition of order 1 [7, p. 270].
Then Lip (X) is a Banach algebra with the norm given by

£ = sup| £@) | + inf | F@) ~ £(@)| £ 0d, D)
for all x and ¥ in X}.

We claim that any norm bounded interval in Lip (X) consists entirely
of constants. Note that each point x in X induces a continuous
homomorphism f— f(x). The norm topology on these evaluation
homomorphisms agrees with the original metric topology on X. Thus
the above claim is just a special case of the scholium.

MAIN LEMMA. If I is a norm closed and bounded convex interval
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wn a normed algebra A, then I is commutative and replete.

Proof. Let A* be the topological dual of A. For each y of A,
let T, be the -operator from A* to A* whose action on an element f
of A* is defined by

(T,f)x) = f(xy) for all x in A.

Thus T, is the adjoint of right multiplication by y [cf. 15, p. 66].
Hence the map y— T, is an algebra isomorphism of A into the
(complete) normed algebra B of all norm continuous linear transfor-
mations of A* into A*. We check quickly that this map is also an
isometry:

TN = sup | fzy)| = sup LA Tzl Tyl = 1Ayl

Thus || T,|l = |ly|l. For the reverse inequality, choose by the Hahn-
Banach theorem a functional g on A with ||g|| =1 and |g(y)| =¥ |-
Then since g€ A*,

1T, | = sup I TN = 1l T(o) I = sup lo@y) | = lg@-v) = llyll-

Let us put on B the weak* operator topology, whose subbasic
neighborhoods of the origin are of the form

N(f; U) = {TeB: T(f) e U}

where fe A* and U is a weak* neighborhood of 0 in 4*. A net (T})
of operators in B converges to an operator T in this weak* operator
topology if and only if T,(f)— T(f) in the weak* topology on A4*
for all f in A*. It is clear that this topology is a locally convex
linear topology on B, but unfortunately multiplication may fail to
be simultaneously continuous in both variables.

However, there is enough continuity for the advancement of the
argument. For any fixed Sin B, the map T — T o S is weak* operator
continuous. For if T, — T and fe A*, then T,(S(f))— T(S(f)). As
a partial dual, if S is weak* continuous from A* into A* as well as
being norm continuous, then the map 7 — So T is weak* operator
continuous. For if T,— T and fe A*, then T,(f)— T(f) so, by
continuity of S, S(T.(f)) — S(T(f)).

It is fortunate that T, is weak* continuous from A* into itself
for every y in A. To see this, it suffices to observe that the preimage
under T, of any subbasic weak* open set is again weak* open in
A*. But if U= {feA*: f(x)e V}, where x is some point in A and
V is open in R, then {ge€ A*: g(xy)€ V} is the preimage of U under
T, and is weak* open.
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Alaoglu’s theorem asserts that the unit ball D of A* is weak*
compact [13, p. 155]. By imitating the proof of this theorem, one
can readily show that the unit ball K of B, which consists of all
linear operators from A* into A* sending D into D, is compact in
the weak* operator topology.

The image J of I under the embedding ¥+ T, is a convex interval
in B. Since I is norm bounded and the embedding is an isometry,
J is contained in some multiple nK of K. But nK is weak* operator
compact, so the weak* operator closure H of J is also compact.
Setting X = B and Y = J, we see from Lemma A that H is a semi-
group. The other requirements for a convex interval follow easily,
so H is a compact convex interval.

Applying the Krein-Milman theorem in conjunction with Propo-
sition 1, we see that H is the closed convex hull of its set E of
idempotents. Proposition 2 implies that E, and hence conv E, is
central in H. Using Lemma A again with X=B,Y=/J, and Z=
conv E, we see that J, and hence I, is commutative.

Let us now show that I is replete. First, since the idempotents
in E commute, E is a semigroup and, in fact, an interval. Actually
E is replete. For if ¢, f, and ¢ are in E, then (¢f)(1 — e¢)g = 0 so
that (as in the proof of Theorem A) the sum ef + (1 — ¢)g must belong
to the interval E. Exercising a little care, it is not too difficult to
convince oneself that the convex hull of a replete interval is replete.
Thus conv E is also a replete interval.

Since the idempotents in E commute with everything in H,
composition of elements of H from either side with a fixed element
of conv £ is continuous. Now if R, S, and 7T are operators in H,
there are nets of operators in conv E such that R,— R, S,— S, and
T,— T. For fixed v, conv E contains R,°S, + (1 — R,)o T, for all
7 and 4. (Here 1 denotes the identity operator.) Since addition is
jointly continuous, the double net indexed by 7, 6 converges to R, S +
(1 — R,)° T, which must, therefore, belong to H. Now taking limits
over ¥ demonstrates the repleteness of H.

Now let z,y, and z belong to I. Then T,,.0-0n:= T.°oT, +
(1 — T, T, belongs to H and is, therefore, the weak* operator limit
of elements from J, the canonical image of I. We claim that this
forces xy + (1 — x)z to be in I, thereby proving that I is replete. To
verify this, it suffices to show that if w is any point of A not in I,
then T, is not the weak* operator limit of a net in J.

Assuming the contrary, suppose T,, — T, where each x(7) is
in I. Since I is convex and norm closed and w¢ I, there is a con-
tinuous linear functional f on A with f(w) > sup f[I] [16, p. 65].
For this f, we must have T,,,(f)— T.(f) in the weak* topology on
A*. In particular, at the point 1 of A4, T,,, ()@ — T.(f)Q).
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Evaluating, this is f(1-z(v)) — f(1-w), violating the choice of f.
Thus the claim is valid, and the lemma is proved.

The next step toward the representation theorem is to show that,
under suitable boundedness conditions a convex interval induces an
algebra norm on the algebra it generates. Then the Main Lemma
and the theory of commutative normed algebras may be applied. As
a measure of boundedness, we associate with a convex interval I in
an algebra A the set I' = {tc A:1/2 + nte I for all integers n > 0}.
Because of the convexity and symmetry of I about 1/2, I' may be
regarded geometrically as the set of all directions in which I is
unbounded. Algebraically, I’ is the largest linear subspace of A4
contained in I — 1/2-1. Thus I’ =0 iff I is linearly bounded (i.e.,
the intersection of I with any line is a bounded subset of that line).
Algebraically I’ behaves like an “unboundedness radical” — that is,
it is an ideal and, when factored out, yields a linearly bounded
interval.

PROPOSITION 3. Let I be a convex interval in an algebra A.

(a) The subalgebra A(I) generated by I in A is given by
Ay ={mx — n-1:zel and m and n are nonnegative integers}.

(b) I is radial from 1/2 in A().

(c) The set I' = {te A:1/2 + nte I for all positive integers m}
is an ideal im A(I).

(d) If xel and x7' exists in A(I), then x™ = my for some ¥y
wn I and positive integer m.

Proof. (a) Let P= {mx:xel and m is a nonnegative integer}.
Then P is a convex cone since I is convex, and P is a semigroup
since I is a semigroup. The linear span of P is P — P, and this,
as the span of a semigroup, must be an algebra. P — P is therefore
the algebra generated by I. But if mx — ny is in P — P where «
and y are in I and m and » are nonnegative integers (not both 0),
then

mx — ny = (m + n)[<m"i n)x + (mj’_ n>(l — y)]—n-l

is the desired form.

(b) For any z in I, 1/2-1 + 1/2x is in I, so I contains a small
segment in the direction of z with endpoint at 1/2. Clearly I is also
radial from 1/2 in the direction of —1. But the set of directions in
which a convex set is radial from a fixed point is a convex cone, and
by (a) the smallest convex cone containing I and —1 is all of A(I).

(c¢) The relation 1/2 — nt = 1 — (1/2 + nt) shows I' = —I'. The
convexity of I’ follows immediately from the convexity of I. But
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I'" is certainly closed under multiplication by positive integers; hence
I' is a linear subspace. For any « in I, the following average is
in I:

1 1 1 1/1
?—l- ntx = E<1 Ex) + 2<2 + 2nt>x .
A similar relation on the left finishes the proof that I’ is an ideal
in the algebra generated by I.

(d) Since xz'is in A(I), by (a) it can be written as 27 '=my—n
where m and m are nonnegative integers and y is in I. If n =0,
we shall show that we can find another representation of 27" involving
n — 1, and thus after a finite number of reductions z™' can be put
in the required form.

Note that 1 = x(my — n) = may — nzx, so (¥) mey = ne + 1. Thus

1

' =my — n(x-27") = my — nx(my — n)
= my — nmaxy + n’x = my — may + (1 — n)mey + n’x
=ml — x)y + (1 — n)(nz + 1) + n’x by (*)
=ml — x)y + nx +1— nx — n + n’z-
=ml —x)y + nx — (n — 1)

_ m " . _
—(m+n)[m+n(l——x)y+m+nx] n—1).

In order to obtain the crucial norm for the proof of the interval
representation theorem, it is necessary to introduce a somewhat less
natural auxillary norm. NOTE: For the next lemma and pair of
propositions, it is assumed that I is a convex, linearly closed interval
which generates the algebra A and that I’ = 0.

LemMA B. Let || - ||; be the Minkowski gauge functional on A
determined by conv(IU—1I). Then ||-||; is an algebra norm on
A—that is, ||y |l = [|ll; - lly|l: and [|1]; = 1.

Proof. Let U= {2x — 1l:x€I}. Then U is an affine image of I,
and 1/2 in I corresponds to 0 in U. Since I' = 0 means (geometri-
cally) that I contains no rays from 1/2, U contains no rays from 0.
Thus the Minkowski guage functional | - |; associated with U vanishes
only at 0. Since I is radical from 1/2 by Proposition 3b, U is
absorbing, so |-|; is finite-valued. Hence |-|; is a bona fide linear
space norm on A.

But conv (I U —I) & U since, for any « in I, 2 = 2((1/2)x + 1/2) — 1
and —x =2(1/2(1 —z)) — 1. Thus||-||;=]-|;. Also(1/2)U = (1/2)] +
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1/2(-1) S econv(IU—1I),80 2|-|; =] -|l;» Hence ||-]|; is an equiva-
lent linear space norm on A. It remains only to show that || - ||; is
an algebra norm. Since I is a semigroup, I U —I is a semigroup,
and hence its convex hull is a semigroup. Thus ||-||; is the gauge
function of a convex semigroup and, therefore, satisfies the multi-
plicative inequality. It is now trivial to check that ||1]; =1, so|| ||,
is a true algebra norm and the lemma is proved.

PROPOSITION 4. Let U= {2x— l:xel}, and let |-|, be the
Minkowsks gauge on A associated with U. Then

(a) I is replete and A is commutative.

(b) |- is an algedbra norm on A.

Proof. (a) Since U contains conv(IU—1I), 0 is in the |- ||,
interior of U. Thus 1/2 is in the interior of (1/2)U+ 1/2=1. In
any topological vector space, the linear closure and topological closure
of any convex set with interior coincide [18, p. 13]. Because we
made the standing hypothesis that I is linearly closed, I is also
|| +|l; — closed. Since || -||; is an algebra norm, we may adduce the
Main Lemma to conclude (a).

(b) It was already observed in the proof of Lemma B that |- |;
is a linear space norm. Trivially [1]|; = 1. Hence the critical matter
here is proving the multiplicative inequality — that is, showing that
U is a semigroup. This utilizes the repleteness of I.

If p=2x—1and gq=2y — 1 lie in U, then

pg=2x—-1)2y —1)=2Qxy —2x—y+1)—1.
Since x and y are in I, by repleteness, I also contains
-z —y9)+ QA —-2)y]l=22y —x—y+1.

This is just the form needed to show that pq lies in U. Hence U
is a semigroup, and the proposition is established.

PROPOSITION 5. Let M; ={xel:x+ x-1¢ I for any x>0}, Then

(a) M, ={xel:puxel for any p>1},

(b) 4f x belongs to M;, then 1 — x is singular in A,

(¢) of |pl; =1, then, for some x in M;, either p = 2x — 1 or
—p =2z —1.

Proof. (a) Suppose ¢ and 2 + A both belong to I for some
N> 0. Then since I is replete, z(x + \) + (1 — z)x = (1 + M) must
belong to I and 1+ X\ > 1.

Conversely, if I contains both x and px for some g > 1, then
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)+ (1= 2) 1= o e D

must belong to I, and ( — 1)/z¢ > 0.

(b) If zxis in I and 1 — z is regular in A, then by Proposition
3d there is a y in I with (1 — 2)™* = my for some m > 0. That is,
y(1 — 2) = 1/m. Whence I must contain 1 — (1 — y)L — z) = = + 1/m,
so « is not in M,.

(c¢) If z is in the boundary of I, we claim that either (i) for
any p#>1, pxel or (i) for any > 1, (1 — x2)¢ I. Supposing (i)
and (ii) both fail, there is then a g > 1 such that I contains both
rox and #(1 — z). Thus I also contains the point

1 1 1 1
= S (m) + 0 - - ) = pfm — )+ 5
Since g > 1, x lies in the relative interior of the line segment from
Yy to 1/2. Because 1/2 is in the interior of I, this impels x to lie in
the interior of I as well [18, p. 9]. Hence the claim is true.

The affine map 2 — 2x — 1 carries the boundary of I onto the
boundary of U. Thus if |p|, =1, we can write »p = 22z — 1 where
z is in the boundary of I. If z satisfies (i), then z€ M, and we are
done. If x satisfies (ii), then 1 — xe€ M; and —p = 2(1 — ) — 1 is the
required form.

Although, in light of the Main Lemma, the equivalence of the
two definitions of M; may seem rather trivial, this equivalence is
actually the key point of the argument. The reader may wish to
check heuristically (by making some plausible sketches in the plane)
that the algebraic information of Proposition 5a effectively eliminates
the possibility of curvature of the boundary of I.

The stage is now set for the final step in the proof of the
representation theorem. Whenever A is a real algebra with 1 and
S is a subset of A that generates 4 as an algebra, then the carrier
of S is defined as the set of all nontrivial homomorphisms ¢ of A
into R such that ¢[S] < [0:1]. Of course, the carrier of S may be
empty, but when it is nonempty, it can be given the topology of
pointwise convergence on S. Since S generates A, pointwise con-
vergence of homomorphisms on S implies pointwise convergence on
all of A. Thus the carrier @ of S may be regarded as a closed subset
of the compact space [0:1]5. Also when the carrier @ of S is non-
empty, there is a natural homomorphism I7; from A into C(®@) given
by

I s(x)(g) = é(x) for all ze A, s€@.
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Here C(@) denotes the algebra of all real-valued continuous functions
on O.

THEOREM B. Suppose that I is a linearly closed and bounded
(I' = 0) convex interval that gemerates an algebra A. Then the
carrier @ of I is nmomempty and the map II;: A— C(®) is an tso-
metric isomorphism of A under the morm |-|; into C(®) under the
supremum norm. Also, II[I] consist of all functions in II,[A] which
map @ into [0: 1].

Proof. We take first the case in which A is a Banach algebra
under | -|;. (The reader may wish to check as an aside that this
happens precisely when I is complete with respect to the metric
induced by |- |;.)

Let us show that any singular element z of A is mapped to 0
by some homomorphism ¢ in @. By Proposition 4a, A is commutative,
so A is a proper ideal in A. Thus 24 is contained in a maximal
ideal M of A. The quotient algebra A/M is a field and can be given
the quotient norm since M is closed. (Recall that in a Banach algebra,
the units form an open set, so all maximal ideals are closed [15,
p. 12].) Thus by the Gelfand-Mazur theorem, A/M is either C or R.
Because its range is finite dimensional over R and its null space M
is closed, the quotient map ¢: A — A/M is continuous as a real linear
transformation. Therefore, ¢ maps the |- |;-bounded convex interval
I into a bounded convex interval g[I]in A/M. In view of the remarks
prior to Example VI, ¢[I] must actually be the real unit interval.
Thus ¢ is in the carrier @ of I and ¢(x) = 0 (since zrcxAS M). In
particular, we now know @ is nonempty since zero is singular.

That I7, is an isometry is now an easy consequence of Propo-
sition 5. Since the |- |-unit ball of A is the set 2I-1, it is easily
seen that @ consists of just those real-valued homomorphisms ¢ of
A with ||¢]| < 1. Therefore, |¢(p)| < |p|; for all p in A and all ¢
in @, 0 || D) |lunir = |2|; Where || - |l..;y denotes the supremum
norm on C(®@). It suffices to verify the reverse inequality when
|p]; =1. Under that assumption, Proposition 5¢ implies that p =
2r —1 or —p =2x — 1 where z is in M,;. Now 1 — zx is singular
by Proposition 5b, so, as shown above, thereis a ¢ in @ with ¢(1 — x)
= 0. For this ¢, ¢(p) = x1; whence | (D) ||lunis =1 = ||

It remains to identify I7,[I]. Since A is complete, the Stone-
Weierstrass theorem implies that I7;[A] must be all of C(@). Now
U is the unit ball of A, so I7,[]U] consists of all continuous functions
mapping @ into [—1:1]. From the definition of U, any point = of I
can be written as x = 1/2(p + 1) where pis in U. Thus =x,[I] consists
of all continuous functions mapping ¢ into [0: 1]. This finishes the
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case in which A is complete.

We now advance to the general case. Since |-|; is an algebra
norm, the completion A of A with respect to | - |; is a Banach algebra.
Let J denote the closure of I in A. Then J is a closed convex
interval and the set U = {2x — 1l:x € J} is the closure in A of U =
{20 — 1:x e I}. Since U is the unit ball in A, U must be the unit ball
of A, so the norm on A is none other than |-|,, Whence we are
back in the complete case.

Letting ¥ denote the carrier of J, the argument for the complete
case demonstrates that /7, is an isometry of A onto C(¥). Now I
is norm-closed in 4. (I is linearly closed and has nonvoid | - [,-interior
in A.) Thus I =JN A, so II,[I] consists of all functions in I7,[A]
which send ¥ into [0: 1].

The proof will be finished if it ecan be shown that ¥ and the
carrier @ of Iin A are really the same (under a suitable identification).
In fact, we claim that each ¢ in ¥ is the extension of a unique ¢ in
@. Surely the restriction of any ¢ to A is in the carrier @ of I.
Conversely, any homomorphism ¢ in @ is |- |;-continuous on A and
hence uniformly continuous. Therefore, ¢ has a unique continuous
extension ¢ to A. Clearly this extension is a homomorphism in ¥.
But any homomorphic extension of ¢ to all of A is continuous (as
shown at the beginning of this proof) and must therefore, coincide
with ¢. Thus ¢ —¢@| A is a biunique map from ¥ onto @. It is
clearly continuous, so, since ¥ and @ are compact Hausdorff spaces,
it must be a homeomorphism. This demonstrates the necessary
identification and finishes the proof.

Because of the radical-like properties of the ideal I’, it is possible
to use Theorem B to extract information about general convex
intervals — even when they are unbounded. For this end, another
proposition is required.

PRrOPOSITION 6. Suppose I is a convex interval that gemerates
an algebra A, and let J denote the canonical tmage of I tn the
quotient algebra A/I'. Then

(a) J'=0,

(b) the linear closure I of I is again a convex interval,

(¢) if I is linearly closed and xel and tel’, then x + t 1s
wn I.

Proof. These assertions are either meaningless or trivial if
I’ = A, so we proceed with the extra assumption that I’ is a proper
ideal.

(a) Suppose pe€ A maps into J' under the quotient homomor-
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phism. Then for each integer n > 0, there is some z, €I such that
1/2 + 2np = x, mod I'. That is, for some ¢, in I’, 1/2 + 2up — t, = @,.
Thus 1/2 + np = (1/2)x, + 1/2(1/2 + t,). Since t, € I’, this last expres-
sion is the average of points in I and hence lies in I. Whence pe I’,
50 p = 0mod I’ Thus J' = 0.

(b) Topologize A by taking as a basis of neighborhoods at 0,
the family of convex sets radial at 0. This makes A into a topological
vector space [13, p. 53]. By Proposition 3b, I is radial from 1/2 and
hence has nonvoid interior in this topology. Therefore, the topological
closure coincides with the linear closure I. Now the topology on A
is so strong that all linear maps from A into A are continuous. In
particular, for any fixed ac€ A, the maps x—xa and x—ax are
continuous. Appealing to Lemma A with X =A4 and Y =1, we my
now conclude that I is a semigroup; the other interval properties
are also easily verified.

(c) For any scalar N in (0:1), n(zx + &) + (1 — A)1/2 =z +
1 — 2)(@/2 + /(1 — N\)t), which is in I. Thus « + t is the endpoint
of a segment whose interior lies entirely in I. If I is linearly closed,
this forces x + ¢ to be in I.

THEOREM C. Let S be a subset of an algebra A which generates
A as an algebra. Let I be the smallest convex interval in A which
contains S. If I denotes the linear closure of I, and core (I) denotes
the set of all points in I from which I is radial, and @ denotes the
carrier of S in A, then

(a) I={zcd:0=<4¢(@) <1 for all ¢ in @},

(b) core(I) ={xcA:0 <g(x) <1 for all ¢ in @},

(c¢) I'={xe€A:¢(x) =0 for all  in @}.

Proof. If I' = A, then @ is empty and the above equalities hold
by default. Thus we suppose I’ is a proper subset of A. Since the
core of any convex set is the same as the core of its linear closure
[18, p. 11], core (I) = core (I). Knowing this and Proposition 3b, one
can give a simple argument to show I’ = (I)’. Thus we can con-
centrate on I, which by Proposition 6b is also an interval.

Let J be the image of I in the quotient algebra A/I’. We
claim J is linearly closed. For suppose p + I’ is the endpoint of
some segment whose interior lies in J. Let ¢ + I' be the other
endpoint. Then for each ) in (0: 1), there is some x; in I such that
A+ (1 —A\)g =2;mod I' That is, there is some ¢; in I' with Ap +
(1 — \)g = «, + t;. By Proposition 6¢c, the points «; + ¢, liein I. Thus
the interior of the segment from p to q lies in I, so pel.
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Combining this with Proposition 6a, we can conclude that J is a
linearly closed and bounded interval and then apply Theorem B.
Let ¥ denote the carrier of J in A/I'. If x is a point of A not in
I’, then x + I' is nonzero in A/I'. Thus by Theorem B, there is
some v in ¥ with y(x + I') = 0. We can lift v to a homomorphism
in @ which does not vanish at x simply be composing + with the
canonical map of A onto A/I'. Thus (c) if proved.

Since the set described on the right in (a) above is clearly a
linearly closed convex interval containing S, to prove equality it
suffices to show that I contains this set. If x is a point of A not
in I, then « + I’ cannot belong to J. For otherwise, there would
be a y in I with @ = ymod I’ and thus, for some t in I’, x =y + ¢.
By Proposition 6c, this would force « to bein I. Thus « + I’ is not
in J so by Theorem B there is some + in ¥ that maps x + I’ into a
number not in [0:1]. Again + may be lifted to a homomorphism ¢
in @ such that ¢(x) = y(x + I)¢ [0:1]. Whence (a) is established.

If z is a core point of I, then for some X > 0, I contains x + A-1,
so, by (a), ¢(x) =d(x + 1) —d(A) <1 — A <1 for any ¢ in @. Simi-
larly d¢(x) >0 for all ¢ in @. Thus the core of I is contained in the
right-hand set of (b). Let us show the reverse inclusion. Since @
is compact in the topology of pointwise convergence on A, if #(x) <1
for all ¢ in @, then for some £ >0, ¢(x) <1 — ¢ for all ¢ in O.
Similarly, if #(x) > 0 for all ¢ in @, then for some )\ > 0, ¢(x) = .
Now let ¢ = min (A, #) and let y = (1 — §)'(x — 6/2). For any ¢ in
@, o(x — 60/2) = 0 since < n\. Dividing by 1 — 6 = 0, we get ¢(y) = 0.
Also, ¢(x — 0/2) < g(x) <1 — 6 since 6 < p¢. On division by 1 — 4,
this yields ¢(y) < 1. Therefore, by part (a), y must belong to I.
Since 2 = (1 — 0)y + 6-1/2 expresses & as an interior point of the
segment from the core point 1/2 of I to the point ¥ of I, * must
all belong to the core of I. Whence, (b) is established and the proof
is completed.

Let us now turn our attention to some consequences of the
theorems proved above.

Proof of Stone’s algebra theorem. In the archimedean ordered
algebra A, let I ={xeA:0<2 <1}. Because 1 is an order unit,
the algebra A is generated by I. Because A is archimedean, I is
linearly closed and I’ =0. Thus Stone’s theorem follows at once
from Theorem B.

We now prove a slightly strengthened version of a result of Dai
and DeMarr [2, p. 651].

THEOREM. Suppose A is an archimedean ordered algebra such
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that for any =0, 1 + = has a positive tnverse. If every element
of A is the difference of positive elements, then multiplication in
A is commutative.

Proof. Define an interval I as above. Again I is linearly closed
and I’ = 0, but possibly the algebra A(I) generated by I is smaller
than A. In any case, A(I) is commutative (by Proposition 4a). For
any x = 0, by hypothesis (1 + x)™* is positive and hence is also less
than 1. Thus for any two positive elements « and vy, (1 + 2)™* and
(1 + )" belong to I and hence commute. It follows that 1+ x and
1+ y commute, so xy = yx. By hypothesis, A is generated by its
positive cone, so A is commutative.

Dai and DeMarr assumed that every decreasing sequence bounded
below had an infimum. When every element is the difference of
positive elements, this implies the archimedean property. For suppose
a > 0. Then a/n is a decreasing sequence bounded below by 0, and
it therefore has an infimum p = 0. Since a/(2n) = p for all », multi-
plying by 2 yields a/n = 2p for all n. Hence p = 2p, so p = 0. Now
if nx < y for all n, write ¥y = a — b where a and b are positive to
get nx < a for all n. Then a/n — x is a decreasing sequence of
positive elements and hence has an infimum ¢ = 0. Clearly, ¢+ z is
the infimum of a/n, but we saw that infimum must be zero. Hence

=—-¢=0.

Let us now give proofs for the two theorems stated at the
beginning of this paper.

Proof of Theorem 1. We shall show that, with our restriction
on M, the interval in Example (III) satisfies the hypotheses of Propo-
sition 4a. It takes only a routine check to show that this interval
is convex and linearly closed. Establishing the necessary bounded-
ness also proceeds easily. Suppose that 1/2 + n@Q belongs to the
interval for all positive integers n. To show that @ is identically
zero on M, it suffices, by the assumption on M, to show that Q sends
every nonnegative function fin M to 0. But for each positive integer
n, 0 < (1/2)f + nQ(f) < f, so for each = in X,

—o= @) S ANE £ - f@) -
" 2n

Whence Q(f) = 0.

One could strengthen the conclusion of Theorem 1 by applying
Theorem B instead of Proposition 4a to the interval of operators in
Example (III). In general there is no clear relationship between the
compact Hausdorff space @ on which the operators can be represented
as continuous functions and the set X. But in the case that M is
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the space C(X) of all continuous functions on compact Hausdorff X,
it is easy to show directly that these operators have a particularly
simple form. Namely, for any such 7 there is a ¢ in C(X) with
0=g() =<1 for all  such that 7(f) = g- f for all f in C(X) (use
the results of [3, p. 490] or apply an argument like [11, p. 628]).

Proof of Theorem 2.  Let S = {a,x"}5-, U{l}. Since a, > 0, the
algebra generated by S is clearly the algebra R[z] of all real poly-
nomials. Let us identify the carrier @ of S. Any homomorphism
of R[x] into R is given by evaluation at some point A in R. Thus
@ can be regarded as the set of all ne R such that 0 Za A" =1
for all ». Thus =0 and X < inf (1/a,)"". By hypothesis, this
infimum is 0. Therefore, the only homomorphism in @ is evaluation
at 0. From this, the conclusion of Theorem 2 can be read off directly
from Theorem C, part (b).

It is well-known that the topology of a compact Hausdorff space
X can be recovered from the algebraic structure of C(X). A usual
procedure is to identify the ideals of C(X) with closed sets in the
topology [6]. But, unfortunately, this is not a biunique correspond-
ence. The next theorem shows another procedure for recovering the
topology of X from C(X).

THEOREM 3. Let X be a compact Hausdorff space. For each closed
subset K of X, let I(K) denote the set of all continuous functions on
X which take only values between 0 and 1 on K. Then

K« I(K)

18 a ome-to-ome correspondence between the closed subsets of X and
the linearly closed convex imtervals in C(X) which generate C(X).

Proof. If Iis a linearly closed convex interval generating C(X),
we need to show that I = I(K) for some K. Since X is compact,
any homomorphism of C(X) into R is evaluation at some point of X.
Thus the carrier @ of I may be regarded as a subset of X. Namely,
0 ={xeX:0= f(x) =1 for all f in I}. Since the functions f are
continuous, @ is closed. Applying Theorem C, part a, we get I = I(D).
Thus K— I(K) is surjective. That it is also one-to-one follows
immediately from Urysohn’s lemma.

THEOREM 4. Suppose that A+ R is a simple R-algebra. Then
any set S which generates A as an R-algebra generates A as a convex
interval.

Proof. Since A is simple and A = R, there can be no algebra
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homomorphisms from A to R. Thus the carrier @ of S is empty.
The theorem now follows from Theorem C.

In essence this result asserts that if any element of a simple
algebra can be obtained from S via the operations of multiplication
and real linear combination, then any element is obtainable from S
by means of multiplication, subtraction from 1, and convex combi-
nation. An analogue of this result for algebras over more general
fields might prove useful in the study of p-adic number fields and
other locally compact fields. Unfortunately, no such analogues are
presently known.

A related direction for improvement would be the weakening of
the convexity assumption. Although in this paper convexity plays
a major role in the arguments, Jewett’s proof of his theorem does
not involve convexity. It does rely, however, on the very potent
hypothesis of uniform closure. Is it possible to simultaneously refine
Theorem C and Jewett’s theorem, giving a precise description of the
interval (not necessarily closed or convex) generated by an arbitrary
set S?

Also, the reader may have noticed that occasionally the full
strength of the interval conditions was not required. Often it sufficed
to note that an interval was closed under the operation xoy = x +
y—ay =1— (1 — 2)(1 — y). Using this observation, can one obtain
a sizable portion of the above theory for algebras without 1 (in
particular, the group algebras)?

We shall close with a curious logical conundrum which arises
from the following algebraic consequence of the main theorems.

THEOREM b. If I is a convex interval in an algebra A, then, for
any x and y in I, 2y — yx belongs to I' = {te A:1/2 + nte I for all
integers m}.

Proof. We may assume without loss of generality that I generates
A. Since R is commutative, any homomorphism from A into R
vanishes on all commutators xy — yx. The theorem now follows from
Theorem C.

This theorem is remarkable in that it is a purely algebraic fact
which seemingly requires a rather involved analytic proof. There
are other results of this kind known — in example, the invertibility
of elements in certain group algebras [12, p. 122]. But a more
remarkable aspect of Theorem 5 is that it implies, in some sense, that
an algebraic proof can be found! The reasoning for this follows.

Let A(x, y) be the free algebra with 1 generated by two non-
commutative variables. If J is the smallest interval in A containing
z and y, then J may be inductively constructed as follows:
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JO = {0’ 1) x, y}
Jpin = {1 — ab, ab: @ and b are in J,}
J=UJ..

Applying Theorem 5 to the convex interval I = convJ, we must have
2y — yx in I'. Thus for each integer % there is some formula in-
volving z, ¥, convex combinations, and interval operations for 1/2 +
k(xy — yx). Being able to describe these formulae explicitly would
constitute a proof of Theorem 5. The long route presented above is
evidence that this investigator has tried in vain to produce the
formulae. Surprisingly, for any fixed %, there does “exist” a finite
algorithm for determining the kth formula. Since 1/2 + kxy — kyx
has rational coefficients, it must be a rational convex combination of
points in J. (Let S be a subset of J with as few elements as possible
such that 1/2 4+ k(zy — yx)cconvS. There is then a unique convex
combination of the points of S yielding 1/2 + k(xy — yx). This can
be interpreted as the unique solution to an appropriate set of linear
equations, all having rational coefficients.) If we let H, be the set
of all convex combinations, using only rational numbers whose de-
nominators are less than %, of points in J,, then 1/2 + k(xy — yx)
must belong to some H,,,. Each H, is finite and can be determined
in a finite, albeit large, number of steps. Hence after a finitely
terminating search through the H,’s, one must eventually discover
1/2 + k(xy — yx) and thereby discover the formula which puts it in I.
The search even for k = 1 has proved futile. The best result is
the trivial formula:
1 1 1 1
5 T —2—(wy yz) = 3(1 yz) + 3(96?/) .
Could it be that the existence of these formulae is logically dependent
on the axiom choice and that they “really are not there?”

The author wishes to express his gratitude to Professor Isaac
Namioka for many enlightening conversations about vector space
topologies. His comments frequently assisted the author to a better
understanding and presentation of several of the arguments in this
paper.
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