Pacific Journal of Mathematics

Coefficient estimates for certain multivalent functions.

Ronald J. Leach

Article information

Source
Pacific J. Math., Volume 74, Number 1 (1978), 133-142.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102810442

Mathematical Reviews number (MathSciNet)
MR0507759

Zentralblatt MATH identifier
0389.30009

Subjects
Primary: 30A34

Citation

Leach, Ronald J. Coefficient estimates for certain multivalent functions. Pacific J. Math. 74 (1978), no. 1, 133--142. https://projecteuclid.org/euclid.pjm/1102810442


Export citation

References

  • [1] D. A. Brannan, J. G. Clunie, and W. E. Kirwan, On the coefficient problem for func- tions of bounded boundary rotation, Ann. Acad. Sci. Fenn. Ser. A.L No. 523 (1973), 18 pp.
  • [2] A. W. Goodman, On some determinantsrelated to p-valent functions,Trans. Amer. Math. Soc., 63 (1948), 175-192.
  • [3] A. W. Goodman, On the Schwarz-Christoffel transformation and p-valent functions, Trans.
  • [4] A. W. Goodman and M. S. Robertson, A class of multivalentfunctions, Trans. Amer. Math. Soc, 70 (1951), 127-136.
  • [5] J. A. Hummel, Multivalentstarlike functions,J Analyse Math., 18 (1967),133-160.
  • [6] R. J. Leach, MultivalentBazilevic functions,Rev. Roumaine de Math. Pures et Appl., 21 (1976), 523-527.
  • [7] R. J. Leach, On some classes of multivalentstarlike functions,Trans. Amer. Math. Soc, 209 (1975), 267-273.
  • [8] R. J. Leach, Multivalent and meromorphic functions of bounded boundary rotation, Canad. J. Math., 27 (1975), 186-199.
  • [9] A. E. Livingston, p-valent close-to-convex functions,Trans. Amer. Math. Soc, 115 (1965), 161-179.
  • [10] A. E. Livingston, The coefficients of multivalent close-to-convexfunctions, Proc Amer. Math. Soc, 21 (1969), 545-552.