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COEFFICIENT ESTIMATES FOR CERTAIN
MULTIVALENT FUNCTIONS

RONALD J. LEACH

We prove the Goodman conjecture for a class of multi-
valent functions including close-to-convex functions under
the restriction that the coefficients are real. We obtain
similar results for other classes of nτultivalent functions.

1* Introduction* Let S denote the class of all functions /
analytic and univalent in the unit disc U with /(0) = 0 and /'(0) = 1
and let S* and K denote the subclasses of starlike and close-to-
convex functions, respectively. Several authors ([3], [5], [6], [9])
have defined multivalent analogs of these subclasses. A commonly
used definition is that feS(p), the class of p-valent starlike func-
tions, if and only if there are numbers zs with | z3- \ < 1 and a func-
tion geS* such that

(1.1) /(*) = Π iKs, *JffOO' ,
m = l

where

Ψ(z, zm) = (z - O ( l ~ znz)lz .

A function g(z) is said to be a Bazilevic function of order a,
a > 0, if

where σ is a univalent starlike function and Re h(z) > 0, h(0) = 1.
If g belongs to the class B(p) of univalent Bazilevic functions of

order p, then / belongs to the class K{p) of p-valently close-to-
convex functions [6]. The representation (1.1) holds for multivalent
analogs of several classes of vnivalent starlike functions [7]. A
similar representation holds for the class Vk(p) multivalent functions
of bounded boundary rotation, with / and g replaced by their de-
rivatives [8].

We say that a function / belongs to the class M(p) of multiva-
lent functions of order p if there are zlf , zp with | zm \ ̂  1 and a
function geS such that (1.1) holds. We note that S(p) and K(p)
are proper subsets of M(p).

This paper is divided into four sections. In § 2, we prove a
preliminary result on the coefficients of a polynomial in z(l — z)~2.
In § 3, we obtain the Goodman conjecture for functions in M(p) with
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real coefficients. Finally, in § 4 we obtain as corollaries some coef-
ficient conjectures for functions with real coefficients in K(p), Vk{p)
and certain other classes.

2 Preliminary results* The following two results are moti-
vated by a result of Goodman [3] and Goodman and Robertson [4].
They show that the extremal functions for the coefficient problem
in several classes of functions are the same.

LEMMA 1. If fk{z) = Σ?-,-* ^zn = Σί«p-» C™M* where u{z) =
z(l - z)~2 and zk+1 is real, then fk+1(z) = φ(z, zk+1)fk(z) = ΣSW-*-i αϊ+ 1 )«*
is αZso α polynomial ΣS=?.-ft-i^+ 1 )^ m w. 1/ sgnαj*} = ( — l)p"j for
p — k ̂ * j <: p, then for fixed n and fixed zk+1 > 0, the signs of
af+1) alternate for p — k — l<^j<^>p and for n > p,

(2.1) |αί*+lϊ I - Σ D{p, n, i )(- l)*-

where
2j{n

D(p, n, j) -

Proof. Since zk+1 is real,

z, zk+ί) = ~Zk

which proves the first statement. To prove the second statement
note that

= - z^i-iy-^iai^i + (l +

- (~iy-«[zk+11αίΛI + (1 + (zk+ιf)Iα?'| + zk+1 \a^|]

where we define a{k) — a{kl — 0. The remaining statement was proved
in [3]. (See also [4].)

LEMMA 2. Suppose zm = zm. Then there are real numbers δ0, blf

and &2 so that

β u(z) = «(1 —
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Proof. From (1.2),

and the result follows after a short calculation.

3* The Goodman conjecture for M(p). In 1948, A. W. Goodman
[2] conjectured that if f(z) = ΣS° α»«* is analytic and at most p-
valent in \z\ < 1, then for 1 ̂  j ^ p < n,

(3.1) K I

where

(3.2) D(p, n, j) =

This conjecture reduces to the Bieberbach conjecture | an | <; n \ ax \ if
p — 1. The conjecture has been proved by A. W. Goodman and
M. S. Robertson [4] if fe S(p) and each an is real and by A. E.
Livingston if fe K(p) f or n = p + 1 with no restrictions on au , ap

[9] and if fe K(p) for all n^p + 1 provided aγ = α2 = = αp_2 = 0
[10].

We will prove that (3.1) holds if feM(p) and has all coefficients
real. As a corollary we will obtain the Goodman conjecture for
functions in K(p) with real coefficients. Our method of proof is
induction on the number k of zi that are not at the origin.

THEOREM 1. Suppose f(z) = Σo° anz
n £ M(p) and that each an is

real. Then for 1 ̂  j ^ p < n,

(ooλ \n I < v 2j(Ή, + p)\ , ,
h (p + j)l (P - Λ! (n - p - 1)! (^2 - ?)l*il '

Proof. Suppose first that

f{z) = Π Ήz, zm) - g{zY
m=i

and that each zm is real. We define the functions fh(z), O^Lksίp, by

(3.4) /„(«) = (g(z)Y

(3.5) Λ+1(«) = f («, «»+1)Λ(a) .

We note that the power series expansion of fk is of the form

(3.6) /,(*) = Σ αϊ'β» .
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Since each zk is real, zk+1 = zk+1 and (3.5) yields

/*•»(*) = Σ α?+ιϊβ

)(l g ) f (g)

g; n=p-k

A short calculation shows

(3.7) α? + ι ) - - s ^ α ί f t + (1 + (s*+ ι)
2H f c ) - zk+1al%

where we define a£lk-i = αi-^-2 = 0 to make the formula simpler.
We begin by showing that (3.3) holds for k = 0. If flr(z) = z

62a;2 + •••, then from (2.4) and (2.6),

Γ~ 00 "~lj>

> L W=2 J

Since each an is real, each δ% is real and hence \bn\ ^ n with equality
for each n only if g(z) = 2(1 — z)~2 or s(l + z)~2. An elementary
computation shows that

y(0) I

which proves the coefficient conjecture for /0.
Suppose now the conjecture is true for fk. That is, for n > p,

(3.8)

We write

(3.9)

where we

(3.8) in the

choose the

form

αff' =

d(p, n,

Σ D(P,
j=p-k

P

Σ d(p>
j=p-k

j) by

— d(p, n

and we choose the remaining d(p, n,

(3.10) Up,n f3)\ ^ D

n,

n,

f P

3),

3)\<\.

p — k ^ j ^ p — l s o t h a t

n, j) .

The choice of d(p, n, j) is clearly not unique. We will show that
there is a method of choosing d(p, n, j), p — k <* j <^ p which leads
naturally to a d(p, n, p — k — 1) such that

(3.11) αjf+1) = Σ c7''^ M ^"{k+ί)

π—p—k—i
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where the additional expression d(p, n, p — k — 1) satisfies (3.10) with
j = p — k — 1. From (3.7) we obtain

(3.12)

where for simplicity we define d(m, n, j) for m ύ p as 1 if m
and 0 if m ^ i . Let

Σ (, n, j)a?+ί)

p-ί

= Σ
(3.13)

c(pf n, p)[-zk+1 Σ d(P, P
j=P-k

Equating coefficients of as in (3.12) and (3.13) we obtain

-«fc+ι[c(p, ^, i - 1) + c(p, »̂ i + 1) + c(p, n, p)d(p, p + 1, i)]

(3.14) + (1 + (zk+1f)c(p, n, j)

+ 1, i) + d(j), n - 1, j)] + (1 + («*+1)
2)d(ί>, n, j) ,

where we have set c(p, n, p + 1) = 0. One solution to the system

(3.14) is

(3.15) c(pf n, j) = d(p, n, j) p - k^ j ^ p

c(p, n, p — k — 1) = d(p, w + 1, p — fc)

(3.16) + d(p, n~l,p — k)- d(p, n, p - k + 1)
, p + 1, p ~ k)

and we note that this solution is independent of zk+1. Since S is
compact in the topology of uniform convergence on compact subsets
of I z < 1 and since the only restriction on the zm is that | zm | ^ 1,
M(p) is compact in the topology of uniform convergence on compact
subsets of | s | < 1. Consequently, any subset of M{p) where either
the zm are fixed or some of the coefficients have fixed absolute value
is also compact in this topology.

Let fk+ί = Σ£=3>-fc-i <*"**" be an extremal function in the set {/fc+1}
of all fk+1(z) of the form (3.5). That is, suppose there is a non-
negative constant E = E(p, n, p — k — 1) such that

= Σ D(p, n,
j=p-k
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and for any ft+ι = Σbίk+1)z\

\ \ Σ
j=p-k

Because of equation (2.1), the function fh+1 of Lemma 1 shows that
E t: D(p, n, p — k — 1). We claim that if fk+1 is extremal for {/fc+1},
then the function fk defined by (2.5) is extremal for {fk}. Suppose
not. Then

(3.17) K > | < Σ

Since by (3.7) α(i+1) is a continuous function of zk+ίf m ̂  p — k — 1,

K + 1 > | < Σ D(p9 n, 3)\afw\ + E\a£ϊk%\
3=p-k

at least for zk+i sufficiently close to 0. Since E ̂  D{p, n, p — k — 1),
there must be a zk+1 for which αjf+1) (considered as a function of
zk+1) must satisfy

ι

p

k)\

(3.18) K f c + 1 ) | = Σ

The set of all extremal functions {fk+1} for which \ap

k2k\, •••, \a
and \aln]\ are fixed and (3.17) holds is a normal and compact family
and hence there is an ε > 0 so that

for \zk+1\ < e and (3.18) holds if \zk+1\ = ε. We may suppose zk+1 < 0
since if not we consider f{ — z). Our extremal function then solves
the problem of maximizing | aιj°+1) \ when zk+1 < 0 is fixed and
KΛI, •••, K Ί are fixed and (3.17) holds.

We will need the following result.

LEMMA 3. Let gk(z) = Σ?-* Vn

k)zn, with \bp%\, , | δ ^ | fixed and
let zk+1 < 0. Then \ b{k+1) \ is maximal when the signs of Vp alternate
for p — k <* j <^ p.

Proof. From (3.7) and (3.9),

Σ= Σ [~**+id(Pf n + 1, j) + (1 + (zk+ι)
2)d(p, n, j)

i f c

, n - 1,

= Σ {[-«*+id(p, w + l, j) + (l + fe+1)
2)rf(^, Λ, j)

jk
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where h(r, j) is a rational function of zk+1 obtained by solving (3.7)
for bf\ An elementary calculation shows that

(3.19)

Since zk+1 < 0, the maximum value of |α^ c + 1 ) | must occur when

sgn d(p, n + 1, j) = sgn d(p, n, j) = sgn d(p, n - 1, j)

and the signs must alternate because of (3.19), which proves the

lemma.
By Lemma 3, for fixed | < Λ | , •••, | < ] | and fixed z f c + 1 <0, K f c + 1 ) |

is maximal only when |<4-ΐ-i|, •••, K f c + 1 ) | are minimal,

sgn d(p, n, j) = sgn af] (p - k ^ j ^ p)

and these signs alternate. An elementary but lengthy calculation

shows that

D(p, n, p - k - 1) = D(p, n + 1, p - k)

(3.20) + D(p, n-l,p~k) + D(p, n, p - k + 1)

> + 1, p - fc) .

We note that | α ^ + 1 ) | is maximal when

In view of (3.19) and (3.20),

d(p, n, p - k - 1) = (~l)k+ίD(p, n,p-k-l)

and therefore this maximum can occur only if

} | = Σ
i f c

which contradicts (3.17). Therefore fk is extremal for {fk}. Applying
this argument to Λ_3,Λ_2,

 β ,/0, we see that the only possible ex-
tremal functions occur when f0 is an extremal function; that is,
when g(z) = z(l - z)~2 or g(z) = «(1 + ^)~2. We may assume g(z) =
z(l - 2)~2 since if not we could consider f(—z).

By Lemma 1, each function fk can be written

Λ+i(«)= Σ

where %(«) = s(l — ^ )"2. By Lemma 3, αjf+1) is maximized only when
the sign of af+ι) alternates for p — k — 1 < j < p, which is equiva-
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lent to the alternating of sgn a{

3

k) by Lemma 1. It follows then from
Lemma 1 that for n > p,

K + Ί ^ Σ D(p,n,j)\a?^\.
j=p-k-l

The result now follows if / has only real zeros.
If / has a nonreal zero zm, since / has real coefficients, / must

also have zm as a zero. If we use Lemma 2 in place of Lemma 1,
the argument in this case is similar to that in the case of real
zeros. We omit the straightforward modification. This completes
the proof of the theorem.

4* Applications* In the proof of Theorem 1 we showed that
the only possible extremal functions were of the form

P

Π
m = l

f(z) = Σanz* = Π Ήz, zm) g(zY ,

where the signs of a3- alternate for 1 ̂  j ^ p and where g is an
extremal function in S or of the form f(—z). Since functions / in
K(p) have the representation

m = l

where g(z) = bpz
p + is in K(p) and |bn\ ^ D(p, n, p)\bp\ [9] with

equality if and only if g{z) = bp[z/(l — xz)2]p, where # is a constant
with \x\ = 1, the method of Theorem 1 proves

THEOREM 2. Let f(z) = Σanz
n eK(p) and suppose each an is real.

Then for n ̂  p,

I «• I ̂  Σ D(P, n, j) \as\ ,

where the D(p, n, j) are given by (3.2).

A similar result holds for the class Vk(p) of multivalent func-
tions of bounded boundary rotation. Recall that fe Vk(p) if there
is a p, 0 < p < 1 so that if 0 < p < r < 1,

(4.i)

and

(4.2) lim sup
i J

Γ Re {l + ̂ / " ( r ^ ) | \ ^ pkπ ,Jo f (re%θ)

It was shown in [8] that if / e Vk(p), then
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where g{z) — z + bzz
2 + , e V*(l). In [1], D. Brannan, J. Clunie, and

W. Kirwan proved that if g e Vk(ΐ), then

where
(4 3) G(z) = τ
with equality only for g(z) = G(z) or its rotations. Consequently, the
technique of Theorem 1 applies and we obtain the following.

THEOREM 3. Let f(z) = Σanz
n e Vk(p) and suppose each an is

real. Then for n > p,

fn, j)\ad\ ,

where c(p, n, j) is defined by

c(p, n, j) = 0 (j > p) ,

c(ny p) = JL x {coefficient of ^"^ in (

— k — 1) = c ( p , n + l,p — k)

+ c(p, ^ — 1, p — fc) + c(p, n, p — k + 1)

p + 1, p - k)

T h i s e x t e n d s a r e s u l t i n [ 8 ] f o r t h e c a s e n = p + lifaί= =
ap^2 — 0.

We note that this technique works for any class of functions
having a representation similar to (1.1) and where the coefficients of
[g(z)]p are simultaneously maximized by a single function with real
positive coefficients. This is the case for the class S^p, a) defined
in [7].
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