Bulletin of the American Mathematical Society

Function algebras and the de Rham theorem in ${\text{PL}}$

Howard Osborn

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 77, Number 3 (1971), 386-391.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183532815

Mathematical Reviews number (MathSciNet)
MR0276979

Zentralblatt MATH identifier
0214.48903

Subjects
Primary: 57D20 58A10: Differential forms
Secondary: 57C99

Citation

Osborn, Howard. Function algebras and the de Rham theorem in ${\text{PL}}$. Bull. Amer. Math. Soc. 77 (1971), no. 3, 386--391. https://projecteuclid.org/euclid.bams/1183532815


Export citation

References

  • 1. T. Banchoff, Critical points and curvature for embedded polyhedra, J. Differential Geometry 1 (1967), 245-256. MR 37 #921.
  • 2. S. S. Chern, A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds, Ann. of Math. (2) 45 (1944), 747-752. MR 6, 106.
  • 3. F. Hirzebruch, Topological methods in algebraic geometry, Springer-Verlag, New York, 1966. MR 34 #2573.
  • 4. J. Milnor, Lectures on characteristic classes, Princeton University, Princeton, N. J., 1958.
  • 5. H. Osborn, Modules of differentials, I. Math. Ann. 170 (1967), 221-244. MR 35 #4839.
  • 6. H. Osborn, Differential geometry inPL (in preparation).
  • 7. R. Thom, Les classes caractéristiques de Pontrjagin des variétées triangulées, Sympos. Internacional de Topología Algebraica, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 54-67. MR 21 #866.
  • 8. E. C. Zeeman, Polyhedral n-manifolds. I. Foundalions, Topology of 3-Manifolds and Related Topics (Proc. Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 57-64. MR 2# #1595.