BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 77, Number 3, May 1971

FUNCTION ALGEBRAS AND THE DE RHAM THEOREM IN PL

BY HOWARD OSBORN¹

Communicated by Jack Schwartz, September 29, 1970

0. Introduction. There is a classical contravariant functor on the category of smooth manifolds M which assigns to each M the algebra A of all smooth functions on M, and one uses this functor implicitly throughout differential topology. For example, the de Rham theorem extends the customary derivation $d: A \rightarrow \mathcal{E}(A)$ to a cochain complex $(\Lambda \mathcal{E}(A), d)$ whose homology is isomorphic to the real cohomology of M itself. In this paper we construct a corresponding contravariant functor on the category of piecewise linear manifolds M, which assigns to each M an algebra A of functions on M. We then define a derivation $d: A \rightarrow \mathcal{E}(A)$ and extend it to a cochain complex $(\Lambda \mathcal{E}(A), d)$ whose homology is isomorphic to the real cohomology of M; this is the de Rham theorem in PL. As an application we construct connections and curvature homomorphisms in terms of $(\Lambda \mathcal{E}(A), d)$, to which we apply a real version of the Chern-Weil theorem to compute real Pontrjagin classes of PL manifolds without using the Hirzebruch L-polynomials.

1. Smoothing homeomorphisms. A simplicial decomposition of \mathbb{R}^n at 0 is any finite triangulation of \mathbb{R}^n into open simplexes such that $0 \in \mathbb{R}^n$ is the only 0-simplex. If α and β are any two such simplicial decompositions then we write $\alpha < \beta$ whenever β is a subdivision of α . For any α and β there is a simplicial decomposition γ with $\alpha < \gamma$ and $\beta < \gamma$, so that the simplicial decompositions of \mathbb{R}^n at 0 form a directed set.

It is clear that a simplicial decomposition α is completely determined by its 1-simplexes ρ_1, \dots, ρ_N (for some N > n), each *p*-simplex of α containing precisely *p* 1-simplexes $\rho_{i_1}, \dots, \rho_{i_p}$ in its closure. If \mathbb{R}^n is endowed with its usual euclidean norm then points on each 1-simplex ρ_i can be identified with their norms $x_i \in \mathbb{R}^+$, and points in the open *p*-simplex determined by $\rho_{i_1}, \dots, \rho_{i_p}$ can be identified by the coordinates $(x_{i_1}, \dots, x_{i_p}) \in (\mathbb{R}^+)^p$.

AMS 1970 subject classifications. Primary 57D20, 58A10; Secondary 57C99.

Key words and phrases. PL manifolds, differential forms, de Rham theorem, connections, curvature homomorphism, Chern-Weil theorem, Pontrjagin classes, Gauss-Bonnet theorem.

¹ Research supported by National Science Foundation Grant GP 13145.

Copyright @ 1971, American Mathematical Society