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0. Introduction. There is a classical contravariant functor on the
category of smooth manifolds M which assigns to each M the algebra
A of all smooth functions on M, and one uses this functor implicitly
throughout differential topology. For example, the de Rham theorem
extends the customary derivation d:4—8&(4) to a cochain complex
(A&(4), d) whose homology is isomorphic to the real cohomology of
M itself. In this paper we construct a corresponding contravariant
functor on the category of piecewise linear manifolds M, which as-
signs to each M an algebra 4 of functions on M. We then define a
derivation d:4—8&(4) and extend it to a cochain complex (A&(4), d)
whose homology is isomorphic to the real cohomology of M ; this is
the de Rham theorem in PL. As an application we construct connec-
tions and curvature homomorphisms in terms of (A&§(4), d), to which
we apply a real version of the Chern-Weil theorem to compute real
Pontrjagin classes of PL manifolds without using the Hirzebruch
L-polynomials.

1. Smoothing homeomorphisms. A simplicial decomposition of
R~ at 0 is any finite triangulation of R” into open simplexes such that
0ER" is the only 0-simplex. If @ and 8 are any two such simplicial
decompositions then we write @ <f whenever 8 is a subdivision of .
For any a and B there is a simplicial decomposition y with o <y and
B <4, so that the simplicial decompositions of R* at 0 form a directed
set.

It is clear that a simplicial decomposition « is completely deter-
mined by its 1-simplexes py, - - -, py (for some N >n), each p-simplex
of a containing precisely p 1-simplexes ps, - - -, ps, in its closure. If
R" is endowed with its usual euclidean norm then points on each
1-simplex p; can be identified with their norms x;& R*, and points in
the open p-simplex determined by py;, - - -, pi, can be identified by
the coordinates (x4, - - -, %4,) € (RY)?.
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