Abstract and Applied Analysis

A Sharp Double Inequality for Trigonometric Functions and Its Applications

Zhen-Hang Yang, Yu-Ming Chu, Ying-Qing Song, and Yong-Min Li

Full-text: Open access

Abstract

We present the best possible parameters p and q such that the double inequality ( 2 / 3 ) cos 2 p ( t / 2 ) + 1 / 3 1 / p < sin t / t < ( 2 / 3 ) cos 2 q ( t / 2 ) + 1 / 3 1 / q holds for any t ( 0 , π / 2 ) . As applications, some new analytic inequalities are established.

Article information

Source
Abstr. Appl. Anal., Volume 2014 (2014), Article ID 592085, 9 pages.

Dates
First available in Project Euclid: 2 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1412277103

Digital Object Identifier
doi:10.1155/2014/592085

Mathematical Reviews number (MathSciNet)
MR3232851

Zentralblatt MATH identifier
07022671

Citation

Yang, Zhen-Hang; Chu, Yu-Ming; Song, Ying-Qing; Li, Yong-Min. A Sharp Double Inequality for Trigonometric Functions and Its Applications. Abstr. Appl. Anal. 2014 (2014), Article ID 592085, 9 pages. doi:10.1155/2014/592085. https://projecteuclid.org/euclid.aaa/1412277103


Export citation