Open Access
2011 Productive elements in group cohomology
Ergün Yalçin
Homology Homotopy Appl. 13(1): 381-401 (2011).

Abstract

Let $G$ be a finite group and $k$ be a field of characteristic $p > 0$. A cohomology class $\zeta\in H^n (G,k)$ is called productive if it annihilates $\rm{Ext}^*_{kG}(L_\zeta,L_\zeta)$. We consider the chain complex $\mathbf{P}(\zeta)$ of projective $kG$-modules which has the homology of an $(n - 1)$-sphere and whose $k$-invariant is $\zeta$ under a certain polarization. We show that $\zeta$ is productive if and only if there is a chain map $\Delta : \mathbf{P}(\zeta)\to \mathbf{P}(\zeta)\otimes \mathbf{P}(\zeta)$ such that $(\rm{id} \otimes \epsilon) \Delta \simeq \rm{id}$ and $(\epsilon \otimes \rm{id}) \Delta \simeq \rm{id}$. Using the Postnikov decomposition of $\mathbf{P}(\zeta) \otimes \mathbf{P}(\zeta)$, we prove that there is a unique obstruction for constructing a chain map $\Delta$ satisfying these properties. Studying this obstruction more closely, we obtain theorems of Carlson and Langer on productive elements.

Citation

Download Citation

Ergün Yalçin. "Productive elements in group cohomology." Homology Homotopy Appl. 13 (1) 381 - 401, 2011.

Information

Published: 2011
First available in Project Euclid: 29 July 2011

zbMATH: 1236.20056
MathSciNet: MR2845636

Subjects:
Primary: 20C20 , 20J06 , 57S17

Keywords: chain complex , diagonal approximation , Group cohomology

Rights: Copyright © 2011 International Press of Boston

Vol.13 • No. 1 • 2011
Back to Top