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PRODUCTIVE ELEMENTS IN GROUP COHOMOLOGY

ERGÜN YALÇIN

(communicated by Graham Ellis)

Abstract
Let G be a finite group and k be a field of characteristic

p > 0. A cohomology class ζ ∈ Hn(G, k) is called productive
if it annihilates Ext∗kG(Lζ , Lζ). We consider the chain com-
plex P(ζ) of projective kG-modules which has the homology
of an (n− 1)-sphere and whose k-invariant is ζ under a certain
polarization. We show that ζ is productive if and only if there
is a chain map ∆: P(ζ) → P(ζ)⊗P(ζ) such that (id⊗ ε)∆ '
id and (ε⊗ id)∆ ' id. Using the Postnikov decomposition of
P(ζ)⊗P(ζ), we prove that there is a unique obstruction for
constructing a chain map ∆ satisfying these properties. Study-
ing this obstruction more closely, we obtain theorems of Carlson
and Langer on productive elements.

1. Introduction

Let G be a finite group and k be a field of characteristic p > 0. Let ζ ∈ Hn(G, k)
denote a nonzero cohomology class of degree n, where n > 1. Associated to ζ, there
is a unique kG-module homomorphism ζ̂ : Ωnk → k and the kG-module Lζ is defined
as the kernel of this homomorphism. A cohomology class ζ is called productive if it
annihilates the cohomology ring Ext∗kG(Lζ , Lζ). In this paper, we study the conditions
for a cohomology class to be productive.

Under the usual identification of Hn(G, k) with the group Un(k, k) of n-fold kG-
module extensions of k by k, the cohomology class ζ is the extension class of an
extension of the form

0 → k → Pn−1/Lζ → Pn−2 → · · · → P0 → k → 0, (1)

where P0, . . . , Pn−1 are projective kG-modules. Let Cζ denote the chain complex
obtained by truncating both ends of this extension. Splicing Cζ with itself infinitely
many times (in the positive direction), one obtains a periodic (positive) chain complex
C∞
ζ and the tensor product of these complexes ⊗iC∞

ζi
over a set of cohomology classes

{ζ1, . . . , ζr} is called a multiple complex. It is shown in [3] that a multiple complex
gives a projective resolution of k as a kG-module if and only if {ζ1, . . . , ζr} is a system
of parameters for the cohomology ring H∗(G, k).
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In [6], Carlson studies a complex dual to Cζ . Let Dζ denote the chain complex
which is obtained by first taking the dual of Cζ and then shifting it to the left so that
(Pn−1/Lζ)

∗ is at dimension zero. In a similar way, we can form an infinite complex
D∞
ζ by splicing Dζ with itself infinitely many times in the positive direction. Note

that the complex D∞
ζ has an augmentation map ε : D∞

ζ → k which comes from the
dual of the map on the left side of the extension (1). Carlson proves the following:

Theorem 1.1 (Carlson [6]). Let ζ ∈ Hn(G, k) be a nonzero cohomology class of
degree n, where n > 1. Then, there is a chain map φ : D∞

ζ → D∞
ζ ⊗D∞

ζ which sat-
isfies (id⊗ ε)φ = id and (ε⊗ id)φ = id if and only if ζ is productive.

Note that if there is a chain map φ as in the above theorem, then the map induced
by φ on cohomology defines a product with unity on the cohomology of D∞

ζ . This
was the main motivation for Carlson to study the productive elements since, when
there is a product structure on H∗(D∞

ζ ), it is easier to calculate the differentials in
the hypercohomology spectral sequence for multiple complexes.

In this paper, we consider the chain complex P(ζ) of projective kG-modules whose
homology is the same as the homology of an (n− 1)-sphere and whose k-invariant is
ζ under a certain polarization. Alternatively, one can define P(ζ) as follows: Let P
be a projective resolution of k as a kG-module and Σn−1P denote the chain complex,
where (Σn−1P)i = Pi−n+1 and ∂ = (−1)n−1∂. Then, P(ζ) is defined as the chain
complex that fits into an extension of the form

0 → Σn−1P → P(ζ) → P → 0 (2)

whose extension class is ζ under the identification [P,ΣnP] = ExtnkG(k, k) (see Sec-
tion 3 for more details). Note that the complex P(ζ) has an augmentation map
ε : P(ζ) → k induced from the augmentation map of P. Our first result is the follow-
ing:

Theorem 1.2. Let ζ ∈ Hn(G, k) be a nonzero cohomology class of degree n, where
n > 1 and let P(ζ) denote the chain complex of projective kG-modules which has the
homology of an (n− 1)-sphere and whose k-invariant is ζ. Then, ζ is productive if and
only if there is a chain map ∆: P(ζ) → P(ζ)⊗P(ζ) which satisfies (id⊗ ε)∆ ' id
and (ε⊗ id)∆ ' id.

The proof essentially follows from the observation that P(ζ) is a projective res-
olution of the chain complex Cζ . Since there is a chain map Cζ → Dζ inducing an
isomorphism on homology (see [4, Proposition 5.2]), this implies that P(ζ) is also
a projective resolution for Dζ . Then Theorem 1.2 follows from Theorem 1.1 as a
consequence of some standard results on projective resolutions.

Next, we consider the question when there is a chain map ∆: P(ζ) → P(ζ)⊗P(ζ)
satisfying (id⊗ ε)∆ ' id and (ε⊗ id)∆ ' id. We answer this question by consider-
ing the Postnikov decomposition of P(ζ)⊗P(ζ) (see Dold [10]). We observe that
P(ζ)⊗P(ζ) fits into an extension of the form

0 → Σn−1P⊗ Σn−1P → P(ζ)⊗P(ζ)
π−→P(ζ ⊕ ζ) → 0, (3)

where P(ζ ⊕ ζ) is defined as the chain complex that fits into an extension

0 → (Σn−1P⊗P)⊕ (P⊗ Σn−1P) → P(ζ ⊕ ζ) → P⊗P → 0 (4)

with extension class θ = (ζ × id, id× ζ). It turns out that one can always find a
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chain map ψ : P(ζ) → P(ζ ⊕ ζ) that commutes with the diagonal approximation
for P (see Proposition 5.1 for the definition of ψ). The existence of a chain map
∆: P(ζ) → P(ζ)⊗P(ζ) satisfying the properties in Theorem 1.2 is equivalent to the
existence of a lifting ψ̃ of ψ satisfying πψ̃ = ψ, where π is the surjective map given in
(3). There is a unique obstruction for such a lifting and after studying this obstruction,
we prove the following:

Theorem 1.3. Let k be a field of characteristic p > 0 and let ζ ∈ Hn(G, k) be a
nonzero cohomology class of degree n, where n > 1. If p > 2 and n is even, then
ψ : P(ζ) → P(ζ ⊕ ζ) lifts to a chain map ψ̃ : P(ζ) → P(ζ)⊗P(ζ) satisfying πψ̃ = ψ.

For p = 2, this lifting exists if and only if S̃q
n−1

ζ is a multiple of ζ.

Here S̃q
n−1

denotes the semilinear extension of the Steenrod square Sqn−1. Note
that as a k-vector space H∗(G, k) is isomorphic to k ⊗F2 H

∗(G,F2), so it has a basis
{ui} lying in H∗(G,F2). The semilinear extension of Sqn−1 action on H∗(G, k) is
defined by

S̃q
n−1

(
∑
i

λiui) =
∑
i

λ2iSq
n−1ui.

The reason for taking the semilinear extension instead of the usual Steenrod square
action is explained in detail in Section 1.3. We also give an example at the end of
Section 1.3 to illustrate the importance of this point (see Example 5.7).

As a corollary of Theorem 1.3, we obtain theorems of Carlson [6, Theorem 4.1]
and Langer [13, Theorem 6.2] on productive elements.

Corollary 1.4 (Carlson [6], Langer [13]). Let k be a field of characteristic p > 0 and
let ζ ∈ Hn(G, k) be a nonzero cohomology class of degree n, where n > 1. Then, the
following holds:

(i) If p > 2 and n is even, then ζ is productive.

(ii) If p = 2, then ζ is productive if and only if S̃q
n−1

ζ is a multiple of ζ.

In the rest of the paper, we consider the question when a cohomology class
ζ ∈ Hn(G, k) annihilates Ext∗kG(Lζ , k). We observe that this is actually a weaker
condition than being productive (see Example 6.8), so we call such a cohomology
class semi-productive. We relate being semi-productive to Massey products and then
to Steenrod squares. We prove the following:

Theorem 1.5. Let k be a field of characteristic 2 and let ζ ∈ Hn(G, k) be a nonzero
cohomology class of degree n, where n > 1. Then, the following are equivalent:

(i) ζ is semi-productive.

(ii) For every v ∈ H∗(G, k) satisfying vζ = 0, the Massey product 〈ζ, v, ζ〉 ≡ 0 mod
(ζ).

(iii) For every v ∈ H∗(G, k) satisfying vζ = 0, the product vS̃q
n−1

ζ ≡ 0 mod (ζ).

The equivalence of the last two statements follows from a theorem of Hirsch [11]
which says that if X is a simplicial complex, then for every v, ζ ∈ H∗(X,F2), the
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equation

〈ζ, v, ζ〉 ≡ vSqn−1ζ mod (ζ)

holds. At the end of the paper, we give an example of a cohomology class which is
not semi-productive. We also provide an example of a semi-productive element which
is not productive.

Throughout the paper all modules are finitely-generated. Whenever there is more
than one place to find a theorem and its proof, we refer to the original paper although
it may not be the easiest source to find. Many of the old results that we quote in the
paper can also be found in the books by Benson [1], [2] and Carlson [7], [8].
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2. Preliminaries on chain complexes

In this section we introduce our notation for chain complexes and state some well-
known results about hypercohomology of chain complexes. For more details on this
material, we refer the reader to [1, Sections 2.3 and 2.7] and [4, Section 2].

Let G be a finite group and k be a field of characteristic p > 0. Throughout the
paper, whenever we say C is a chain complex, we always mean that C is a chain
complex of finitely-generated kG-modules and it is bounded from below, i.e., there
exists an N such that Ci = 0 for i < N . In fact, almost all of our chain complexes
are positive, i.e., Ci = 0 for i < 0.

LetC andD be two chain complexes. Then, we denote byC⊗D the chain complex

(C⊗D)n =
⊕
i+j=n

Ci ⊗k Dj

whose differential is defined by ∂(x⊗ y) = ∂(x)⊗ y + (−1)ix⊗ ∂(y) for every x ∈ Ci

and y ∈ Dj . The G-action on C⊗D is given by the diagonal action. We define the
Hom-complex Hom(C,D) as the chain complex

Hom(C,D)n =
∏

i+n=j

HomkG(Ci,Dj)

with differential ∂(f)(x) = ∂(f(x))− (−1)nf(∂(x)) for f ∈ HomkG(Ci,Di+n) and
x ∈ Ci+1. If f ∈ Hom(C,D)n, then we say f is of degree n. A map f : C → D
of degree zero is called a chain map if ∂(f) = ∂f − f∂ = 0. We say two chain maps
f, g : C → D are homotopic if there is a degree one map H : C → D such that
∂H +H∂ = f − g. In this case, we write f ' g. We denote by [C,D] the group of
homotopy classes of chain maps f : C → D. Note that [C,D] is the same as 0-th
homology group of the Hom-complex Hom(C,D).

A chain map f : C → D is called a homotopy equivalence if there exists a chain
map g : D → C such that fg ' id and gf ' id. If a chain map f induces isomorphism
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on homology, then we say f is a weak (homology) equivalence. For each integer n,
we denote by ΣnC, the chain complex (ΣnC)i = Ci−n with differential (Σn∂)i =
(−1)n∂i−n. Note that Hom(C,ΣnD) = ΣnHom(C,D). So we have

[C,ΣnD] = H0(Σ
nHom(C,D)) = H−n(Hom(C,D)) = Hn(Hom(C,D)), (5)

where the last equality comes from the usual convention of interpreting a chain com-
plex as a cochain complex by taking Cn = C−n and δn = ∂−n.

2.1. Hypercohomology
Given a chain complex C, a projective resolution of C is defined as a chain complex

P (bounded from below) of projective kG-modules together with a chain map P → C
which induces an isomorphism on homology. Given two chain complexes C and D,
the n-th ext-group of C and D is defined as

ExtnkG(C,D) := Hn(Hom(P,D)),

where P → C is a projective resolution of C. The ext-group ExtnkG(C,D) is called
the n-th hypercohomology group of C and D. Using the identification given in (5),
we can also take

ExtnkG(C,D) = [P,ΣnD],

where P is a projective resolution of C. The following is a useful observation:

Lemma 2.1. If f : C → C′ and g : D → D′ are weak equivalences, then the induced
map

(f∗, g∗) : Ext∗kG(C
′,D) → Ext∗kG(C,D

′)

is an isomorphism.

Proof. Let P and P′ be projective resolutions of C and C′, respectively. Then, f
lifts to a chain map f̃ : P → P′ which is also a weak equivalence. Since P and P′ are
projective complexes which are bounded from below, f̃ is a homotopy equivalence
(see [5, Chp I, Thm 8.4]). This induces a homotopy equivalence

f∗ : Hom(P′,ΣnD)
'−→ Hom(P,ΣnD)

and hence an isomorphism on homology. Since Σng : ΣnD → ΣnD′ is a weak equiv-
alence, the induced map

g∗ : Hom(P,ΣnD)−→ Hom(P,ΣnD′)

is also a weak equivalence (see [5, Chp I, Thm 8.5]). Combining these, we get the
desired isomorphism on ext-groups.

WhenC is a chain complex of projective kG-modules andM is a kG-module, the n-
th cohomology of the cochain complex HomkG(C,M) is often denoted by Hn(C,M).
Note that the cohomology group Hn(C,M) is the same as the hypercohomology
group ExtnkG(C,M), where M is the chain complex with M at dimension zero and
zero everywhere else. So, using Lemma 2.1, we can identify the cohomology group
Hn(C,M) with the group of homotopy classes [C,ΣnP(M)]. In particular, the group
cohomology Hn(G, k) can be identified with the group [P,ΣnP]. More generally, for
any kG-modules N and M , we can identify the ext-group ExtnkG(N,M) with the
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group of homotopy classes [P(N),ΣnP(M)], where P(N) and P(M) are projective
resolutions of N and M , respectively.

2.2. Products in cohomology
The algebra structure of H∗(G, k) and the H∗(G, k)-module structure of H∗(C, k)

can be defined in terms of composition of chain maps using the above identifications.
Given x ∈ Hn(G, k) and y ∈ Hm(G, k), let x̂ : P → ΣnP and ŷ : P → ΣmP be chain
maps that represent x and y, respectively. Then, the cup product xy ∈ Hn+m(G, k)
is defined as the cohomology class represented by the composition

P
ŷ

// ΣmP
Σmx̂ // Σm+nP

Similarly, for x ∈ Hn(G, k) and u ∈ Hm(C, k), one can define the cup product xu as
a composition of associated chain maps.

Alternatively, one can define products in hypercohomology using (cross) products
of chain maps. Given two maps f ∈ Hom(C,D) and g ∈ Hom(E,F), the product
f × g ∈ Hom(C⊗E,D⊗ F) is defined by

(f × g)(x⊗ y) = (−1)deg(x) deg(g)f(x)⊗ g(y).

Note that here we use the following well-known sign convention: multiply an expres-
sion by (−1)nm whenever two terms with degrees n andm are swapped. In particular,
we have

(f ′ × g′) ◦ (f × g) = (−1)deg(g
′) deg(f)(f ′ ◦ f)× (g′ ◦ g).

A list of similar formulas can be found in [14, Section 2].
Using the cross product, one can express the cup product xy as a composition

P
∆ // P⊗P

x̂×ŷ
// ΣnP⊗ ΣmP

µ
// Σm+nP ,

where ∆: P → P⊗P is a chain map covering the diagonal map k → k ⊗ k defined
by a→ a⊗ 1 and µ is a chain map covering the multiplication map k ⊗ k → k defined
by µ(a⊗ b) = ab. For more details on the products in hypercohomology, we refer the
reader to [1, Section 3.2].

3. Extensions of projective chain complexes

Let G be a finite group and k be a field of characteristic p > 0. As in the previous
section, we only consider chain complexes of finitely-generated kG-modules which are
bounded from below. In this section, we also assume that all the chain complexes are
projective, i.e., they are chain complexes of projective kG-modules.

Given an extension of (projective) chain complexes 0 → A → B → C → 0, associ-
ated to it, there is an extension class α ∈ [C,ΣA] defined as follows: Given an exten-
sion, we can choose kG-module splittings for each n and assume that Bn = An ⊕Cn

for all n. Then, the differential ∂B is of the form

∂B =

[
∂A α
0 ∂C

]
,

where α : C → ΣA is a chain map. The fact that α is a chain map follows from
the identity (∂B)2 = 0 which gives −∂Aα = α∂C . In the usual way one can define an
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equivalence relation for extensions and then obtain a bijective correspondence between
the group of equivalence classes of extensions of the form 0 → A → B → C → 0 and
the group [C,ΣA], of homotopy classes of chain maps C → ΣA. We leave the details
to the reader.

One important example of an extension that we deal with in this paper is the
following:

Example 3.1. Let ζ ∈ Hn(G, k) be a nonzero cohomology class of degree n, where
n > 1 and let P(ζ) denote the chain complex which fits into the extension

0 → Σn−1P → P(ζ) → P → 0

whose extension class is equal to ζ under the identification Hn(G, k) = [P,ΣnP].
Note that P(ζ) has the homology of an (n− 1)-dimensional sphere. Given a chain
complex C of projective modules which has homology of an (n− 1)-sphere, one can
choose a pair of isomorphisms ϕ : H0(C) → k and φ : Hn−1(C) → k which is called a
polarization of C, and using this polarization, one can define a unique cohomology
class in ExtnkG(k, k). This cohomology class is called the k-invariant of the polarized
complex C (see Definition 3 in [9]). Note that there is an obvious polarization for
P(ζ) coming from the augmentation map ε : P → k and its shift Σnε : ΣnP → k, and
under this polarization, the k-invariant of P(ζ) is equal to ζ.

We now prove some simple but useful lemmas on the extensions of projective chain
complexes.

Lemma 3.2. Let 0 → A → B → C → 0 be an extension with extension class [α],
where α : C → ΣA. Given a chain map f : D → C, it lifts to a chain map f̃ : D → B
if and only if the composition αf is homotopic to zero.

Proof. Choosing a kG-module splitting for each n, we can assume that Bn = An ⊕
Cn for each n. Suppose that f lifts to f̃ , then we can write f̃ : D → B as a pair
f̃ = (H, f), whereH : D → A. The chain map condition for f̃ gives −∂H +H∂ = αf .
So, αf : D → ΣA is homotopy equivalent to zero. Conversely, if αf ' 0, then there
is an H satisfying −∂H +H∂ = αf . Taking f̃ = (H, f), we obtain a lifting for f .

Another useful lemma is the following:

Lemma 3.3. Let E : 0 → A
i−→B

π−→C → 0 be an extension of chain complexes. If

0 → Σ−1C → A′ → B → 0

is an extension with extension class [π] ∈ [B,C], then A and A′ are homotopy equiv-
alent.

Proof. We can assume that Bn = An ⊕Cn for all n and the differential ∂B is of the
form

∂B =

[
∂A α
0 ∂C

]
,

where α : C → ΣA is a chain map representing the extension class for E . Similarly,
we can take A′ as the complex where A′

n = Cn+1 ⊕An ⊕Cn for all n and with
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differential

∂A
′
=

−∂C 0 id
0 ∂A α
0 0 ∂C

 .
Let j : A → A′ be the inclusion defined by a→ (0, a, 0) and let q : A′ → A be the
projection map given by (c1, a, c2) → a− α(c1). Taking H : A′ → Σ−1A′ as the map
H(c1, a, c2) = (0, 0, c1), we see that the equality

∂A
′
H +H∂A

′
= id− jq

holds. So, j : A → A′ is a homotopy equivalence.

The following lemma will be used in the proof of Theorem 1.3.

Lemma 3.4. Let 0 → A → B → C → 0 be an extension of chain complexes with
extension class [α] ∈ [C,ΣA]. Given a chain map ϕ : B → D, we can write

ϕ = [ϕ1 ϕ2]

by choosing a kG-module decomposition for B. Then, the following holds:

(i) ϕ1 is a chain map. If ϕ1 = 0, then ϕ2 is also a chain map.

(ii) If ϕ1 ' 0 via a homotopy H, then ϕ ' [0 ϕ′
2], where ϕ

′
2 = ϕ2 −Hα.

(iii) If ϕ1 = 0, then ϕ ' 0 if and only if ϕ2 ' uα for some chain map u : A → Σ−1D.

Proof. The first statement is obvious. For (ii), take G = [H 0], then G∂ + ∂G =
[ϕ1 Hα] = ϕ− [0 ϕ′

2]. The last statement follows from (ii).

4. Proof of Theorem 1.2

Let G be a finite group and k be a field of characteristics p > 0. Given a kG-
moduleM , there is a projective cover qM : PM →M forM , and the kG- module ΩM
is defined as the kernel of this surjective map. Inductively, one can define ΩnM for
all n > 0 by taking Ω0M =M and ΩnM = Ω(Ωn−1M) for n > 1. Note that if

· · · → Pn
∂n−→Pn−1

∂n−1−→ Pn−2 → · · · → P1
∂1−→P0 →M → 0

is a projective resolution of M , the kernel of ∂n−1 is isomorphic to ΩnM ⊕Q for
some projective kG-module Q. If P∗ is a minimal projective resolution, then we have
ker ∂n ∼= ΩnM for all n.

Let P∗ be a minimal projective resolution for k. A cohomology class ζ ∈ Hn(G, k)

is represented by a homomorphism ζ̂ : Pn → k which satisfies the cocycle condition
δζ̂ = 0. So, ζ̂ defines a map ζ̂ : Ωnk → k and the kG-module Lζ is defined as the
kernel of this homomorphism. It is easy to show that Lζ is uniquely defined by ζ up
to isomorphism (see [7, Lemma 6.10]). As a consequence of the definition, we have



PRODUCTIVE ELEMENTS IN GROUP COHOMOLOGY 389

the following diagram:

Lζ

��

Lζ

��

0 // Ωn(k) //

ζ̂

��

Pn−1
//

��

Pn−2
// · · · // k // 0

0 // k // Pn−1/Lζ // Pn−2
// · · · // k // 0.

The extension class of the extension on the bottom row of the above diagram is
equal to ζ under the usual isomorphism between Hn(G, k) and the algebra Un(k, k)
of n-fold k by k extensions.

The correspondence between ζ and the homomorphism ζ̂ : Ωnk → k can be made
more explicit using the stable module category. Recall that the stable module category
of kG-modules is a category where the objects are kG-modules and morphisms are
given by

HomkG(M,N) = HomkG(M,N)/PHomkG(M,N),

where PHomkG(M,N) denotes the subgroup of all kG-homomorphismsM → N that
factor through a projective module. For a positive n, we have

ExtnkG(M,N) ∼= HomkG(Ω
nM,N)

and under this identification ζ corresponds to the map ζ̂ : Ωnk → k in stable module
category (see [7, page 38-39]).

In [6], Carlson considers the dual of the k by k extension given in the above
diagram. This is an extension of the form

0 → k → P ∗
0 → · · · → P ∗

n−2 → Uζ → k → 0, (6)

where Uζ = (Pn−1/Lζ)
∗. The homomorphism Uζ → k is denoted by ε. Carlson proves

the following:

Proposition 4.1. If ζ is productive, then there exists a homomorphism φ : Uζ →
Uζ ⊗ Uζ such that (id⊗ ε)φ = id = (ε⊗ id)φ.

Proof. See [6, Prop 2.3].

LetDζ denote the chain complex obtained by truncating both ends of the extension
given in (6). Note that Dζ has an augmentation map ε : Dζ → k which comes from
ε : Uζ → k. We have the following:

Proposition 4.2. Let ζ ∈ Hn(G, k) be a nonzero cohomology class of degree n where
n > 1. If ζ is productive, then there exists a chain map φ′ : Dζ → Dζ ⊗Dζ such that
(id⊗ ε)φ′ ' id and (ε⊗ id)φ′ ' id.

Proof. Since P ∗
0 , . . . , P

∗
n−2 are projective and Dζ ⊗Dζ has no homology in dimen-

sions 0 < i < n− 1, the map φ : Uζ → Uζ ⊗ Uζ extends to a chain map φ′ : Dζ →
Dζ ⊗Dζ . Since (id⊗ ε)φ = id = (ε⊗ id)φ, we can construct homotopies (id⊗ ε)φ′ '
id and (ε⊗ id)φ′ ' id.
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Now, we consider the chain complex P(ζ) defined in the introduction. Recall that
P(ζ) is a chain complex of projective modules that fits into an extension of the form

0 → Σn−1P → P(ζ) → P → 0 (7)

with extension class ζ ∈ [P,ΣnP]. Our first observation is the following:

Proposition 4.3. The complex P(ζ) is a projective resolution of Cζ , i.e., there is a
chain map P(ζ) → Cζ that induces an isomorphism on homology.

Proof. The proof follows from an argument given in the proof of Lemma 3.1 in [4].
Let C∞

ζ denote the complex obtained by splicing Cζ with itself infinitely many times
in the positive direction. Note that there is a short exact sequence of the form

0 → Cζ → C∞
ζ → ΣnC∞

ζ → 0.

After tensoring this sequence with a projective resolution P of k, we obtain a short
sequence of projective chain complexes of the form

0 → P⊗Cζ → P⊗C∞
ζ → P⊗ ΣnC∞

ζ → 0.

The complex P⊗C∞
ζ is a projective resolution of k since the complex C∞

ζ has the
homology of a point. Similarly, the complex P⊗ ΣnC∞

ζ is homotopy equivalent to
ΣnP. It is shown in [4, page 455] that the map

P⊗C∞
ζ → P⊗ ΣnC∞

ζ

represents the cohomology class ζ under the identification [P,ΣnP] = ExtnkG(k, k).
Now, by Lemma 3.3, we can conclude that P⊗Cζ is chain homotopy equivalent to
P(ζ). So there is a chain map P(ζ) → Cζ which induces an isomorphism on homology.

We have the following immediate corollary.

Corollary 4.4. The complex P(ζ) is a projective resolution of Dζ .

Proof. This follows from the fact that there is a chain map Cζ → Dζ which induces
an isomorphism on homology (see [4, Proposition 5.2]).

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Assume that ζ is productive. Then, by Proposition 4.2, there
is a chain map φ′ : Dζ → Dζ ⊗Dζ such that (id⊗ ε)φ′ ' id and (ε⊗ id)φ′ ' id. By
Corollary 4.4, P(ζ) is a projective resolution for Dζ . So, by the standard properties
of projective resolutions, there is a chain map ∆: P(ζ) → P(ζ)⊗P(ζ) which makes
the following diagram commute:

P(ζ)

∆

��

// Dζ

φ′

��

P(ζ)⊗P(ζ) // Dζ ⊗Dζ .

Since both (id⊗ ε)∆ and (ε⊗ id)∆ induces the identity map on homology, they are
homotopic to the identity map on P(ζ).
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For the converse, assume that there is a chain map ∆: P(ζ) → P(ζ)⊗P(ζ) satis-
fying the properties. Consider the sequence

0 → Σn−1P⊗P(ζ) → P(ζ)⊗P(ζ) → P⊗P(ζ) → 0

which is obtained by tensoring the sequence (7) with P(ζ). Note that using the chain
homotopy equivalence P⊗P(ζ) ' k ⊗P(ζ) ∼= P(ζ), we can view the diagonal map
∆ as a splitting map for this exact sequence. This implies that the composition

µζ : P(ζ)
' // P⊗P(ζ)

ζ̂⊗id
// ΣnP⊗P(ζ)

' // ΣnP(ζ)

is homotopic to zero.
Given a chain complex C, let ΓkC denote the truncation of C at k. This is a

complex where (ΓkC)i = Ci for all i > k and (ΓkC)i = 0 otherwise. The differentials
of ΓkC are the same as the differentials of C whenever it is not zero. Note that when
we truncate both of the complexes P(ζ) and ΣnP(ζ) at k = 2n, we get a chain map

Γ2nµζ : Γ2nP(ζ) → Γ2nΣ
nP(ζ).

Both of these truncated complexes have only one nontrivial homology which is at
dimension 2n. It is easy to see that

H2n(Γ2nP(ζ)) ∼= ΩnLζ ⊕ (proj) and H2n(Γ2nΣ
nP(ζ)) ∼= Lζ ⊕ (proj)

and we claim that the map induced by Γ2nµζ on homology is stably equivalent to the
composition

ΩnLζ
∼= // Ωnk ⊗ Lζ

ζ̂⊗id
// k ⊗ Lζ

∼= // Lζ .

To see this first note that

H2n(Γ2n(P⊗P(ζ))) ∼= H2n(ΓnP⊗ ΓnP(ζ))⊕Q

for some projective module Q. This gives that

H2n(Γ2n(P⊗P(ζ))) ∼= (Ωnk ⊗ Lζ)⊕Q.

Similarly, we have

H2n(Γ2n(Σ
nP⊗P(ζ))) ∼= (k ⊗ Lζ)⊕Q′

for some projective module Q′ and the map between the nonprojective parts of these
modules is induced by the chain map

Γnζ̂ ⊗ id : ΓnP⊗ ΓnP(ζ) → ΓnΣ
nP⊗ ΓnP(ζ).

The map induced by this chain map on homology is obviously

Ωnk ⊗ Lζ
ζ̂⊗id

// k ⊗ Lζ

so the claim is true.
Now, since µζ ' 0, the map induced by the chain map Γ2nµζ on homology splits

through a projective module. It follows that the image of ζ in

HomkG(Ω
nLζ , Lζ) ∼= ExtnkG(Lζ , Lζ)

is zero.
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5. Proof of Theorem 1.3

In this section, we study the obstructions for the existence of a chain map

∆: P(ζ) → P(ζ)⊗P(ζ)

satisfying (ε⊗ id)∆ ' id and (id⊗ ε)∆ ' id. The chain complex P(ζ) fits into an
extension of the form

0 → Σn−1P → P(ζ) → P → 0

with extension class ζ ∈ [P,ΣnP]. To avoid complicated formulas with (−1)n−1∂, we
regard Σn−1P not as a shift of P, but as a separate chain complex denoted by Q.
Let α : P → ΣQ be a representative of the extension class of this extension. Then, by
choosing a kG-module splitting, we can express the differential on P(ζ) as a matrix
by

∂ =

[
∂Q α
0 ∂P

]
.

The splitting for P(ζ) gives a splitting for the complex P(ζ)⊗P(ζ), where

(P(ζ)⊗P(ζ))i = (Q⊗Q)i ⊕ (Q⊗P)i ⊕ (P⊗Q)i ⊕ (P⊗P)i

for all i and with respect to this splitting, the differential for P(ζ)⊗P(ζ) can be
expressed in the matrix form as

∂ =


∂ id× α α× id 0
0 ∂ 0 α× id
0 0 ∂ id× α
0 0 0 ∂

 .
Note that the differentials on the diagonal of the above matrix are of the form

∂ = ∂ × id + id× ∂

and, by the usual convention of signs, we have

(∂ × id + id× ∂)(x⊗ y) = ∂(x)⊗ y + (−1)deg xx⊗ ∂(y).

Note also that

(id× α)(α× id) = (−1)degα(α× id)(id× α) = −(α× id)(id× α),

so the above matrix squares to zero.
Because of the shape of the matrix for ∂, there is a 3-step filtration for P(ζ)⊗P(ζ).

Let us define P(ζ ⊕ ζ) as the chain complex

P(ζ ⊕ ζ)i = (Q⊗P)i ⊕ (P⊗Q)i ⊕ (P⊗P)i

with differential

∂ =

∂ 0 α× id
0 ∂ id× α
0 0 ∂

 .
Note that P(ζ ⊕ ζ) fits into the extension of the form

0 → (Q⊗P)⊕ (P⊗Q) → P(ζ ⊕ ζ) → P⊗P → 0
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with extension class

θ =

[
α× id
id× α

]
.

By our choice of P(ζ ⊕ ζ), there is also an extension

0 → Q⊗Q → P(ζ)⊗P(ζ) → P(ζ ⊕ ζ) → 0

with extension class

η =
[
id× α α× id 0

]
.

Our first observation is the following:

Proposition 5.1. There is a chain map ψ : P(ζ) → P(ζ ⊕ ζ) which makes the fol-
lowing diagram commute

0 // Q //

(∆1,∆2)

��

P(ζ) //

ψ

��

P //

∆

��

0

0 // (Q⊗P)⊕ (P⊗Q) // P(ζ ⊕ ζ) // P⊗P // 0,

where ∆,∆1,∆2 are chain maps covering the map k → k ⊗ k defined by λ→ λ⊗ 1.

This is in some sense saying that there are no obstructions for lifting ∆: P →
P⊗P to a chain map P(ζ) → P(ζ ⊕ ζ). To prove Proposition 5.1, first observe that
if ψ exists, then it must be of the form

ψ =

∆1 H1

∆2 H2

0 ∆

 ,
where H1 and H2 satisfy the following formulas:

∂H1 −H1∂ = ∆1α− (α× id)∆

∂H2 −H2∂ = ∆2α− (id× α)∆.
(8)

Note that maps on the right hand side are of the form P → Σ(Q⊗P) or P →
Σ(P⊗Q), so Proposition 5.1 follows from the following lemma.

Lemma 5.2. There are homotopy equivalences (α× id)∆ ' ∆1α and (id× α)∆ '
∆2α.

Proof. We will show that (α× id)∆ ' ∆1α. A proof for the second homotopy equiv-
alence can be given in a similar way. Let ε : P → k denote the augmentation map
and let id⊗ ε : A⊗P → A denote the chain map defined by (id⊗ ε)(a⊗ b) = ε(b)a,
where A = P or Q. Then, we have

(id⊗ ε)(α× id)∆ ' α(id⊗ ε)∆ ' α ' (id⊗ ε)∆1α.

Since id⊗ ε is a homotopy equivalence, the result follows.

Note that there is more than one chain map ψ that fits into the diagram given
in Proposition 5.1 depending on the choices we make for homotopies H1 and H2.
When we want to emphasize the dependency of ψ on H1 and H2, we will use the
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notation ψ(H1,H2). We will see later that the answer to the question whether or not
ψ(H1,H2) lifts to a chain map ψ̃ : P(ζ) → P(ζ)⊗P(ζ) does not depend on H1 and
H2.

Observe that if (H1,H2) and (H ′
1,H

′
2) are two different choices of homotopies

satisfying the equations in (8), then the differences H1 −H ′
1 and H2 −H ′

2 are chain
maps. We will see below that, up to chain maps, the homotopies H1 and H2 can be
chosen to satisfy certain identities. For chain complexes A and B, let T : A⊗B →
B⊗A be the chain map defined by

T (a⊗ b) = (−1)deg(a) deg(b)b⊗ a.

Observe that for maps f ∈ Hom(C,D) and g ∈ Hom(E,F), we have

T (f × g)T = (−1)deg(f) deg(g)g × f.

In particular, we have (id× α) = T (α× id)T .

Since T : P⊗P → P⊗P induces the identity map on homology, it is homotopic
to the identity map. Let H denote the homotopy that satisfies ∂H +H∂ = id− T .
Similarly, there is a homotopy between ∆2 and T∆1. Let H

′ be the homotopy ∂H ′ +
H ′∂ = ∆2 − T∆1. We obtain the following:

Lemma 5.3. Up to chain maps we can choose the homotopies H1 and H2 so that
they satisfy the relation

H2 − TH1 = H ′α+ (id× α)H∆.

Proof. Applying T to the first equation in (8), we get

(∂H2 −H2∂)− T (∂H1 −H1∂) = ∆2α− (id× α)∆− T∆1α+ T (α× id)∆

= (∆2 − T∆1)α− (id× α)(id− T )∆

= (∂H ′ +H ′∂)α− (id× α)(∂H +H∂)∆

= ∂H ′α−H ′α∂ + ∂(id× α)H∆− (id× α)H∆∂.

Now, we are interested in finding the obstructions for lifting the map ψ : P(ζ) →
P(ζ ⊕ ζ) to a chain map ψ̃ : P(ζ) → P(ζ)⊗P(ζ) so that πψ̃ = ψ, where π is the map
in the extension (3). Since the extension class of this extension is

η =
[
id× α α× id 0

]
,

by Lemma 3.2, there is a unique obstruction for lifting ψ which is the homotopy class
of the composition ηψ. The following is true for this obstruction:

Proposition 5.4. Let ψ(H1, H2) be a chain map that fits into the diagram given in
Proposition 5.1 and let η be as above. Suppose that H1 and H2 satisfy the relation
given in Lemma 5.3. Then, the following holds:

(i) If p is odd and n is even, then ηψ ' 0.

(ii) If p = 2, then ηψ ' 0 if and only if S̃q
n−1

ζ is a multiple of ζ.
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Proof. By Lemma 2.1, the map ηψ : P(ζ) → Σ(Q⊗Q) is homotopic zero if and only
if its composition with

ε⊗ ε : Σ(Q⊗Q) → Σ2n−1k

is homotopic to zero where ε⊗ ε is the map defined by (ε⊗ ε)(a⊗ b) = ε(a)ε(b). The
composition ϕ = (ε⊗ ε)ηψ can be expressed as a matrix ϕ = [ϕ1 ϕ2], where

ϕ1 = (ε⊗ ε)(id× α)∆1 + (ε⊗ ε)(α× id)∆2

ϕ2 = (ε⊗ ε)(id× α)H1 + (ε⊗ ε)(α× id)H2.

Note that (ε⊗ ε)T = (−1)n−1(ε⊗ ε), so we have

ϕ1 ' (ε⊗ ε)(id× α)∆1 + (ε⊗ ε)(α× id)T∆1 = (1 + (−1)n−1)(ε⊗ ε)(id× α)∆1.

Thus if p = 2, or p > 2 and n is even, then ϕ1 ' 0. The homotopy between ϕ1 and
the zero map can be taken as the composition G = (ε⊗ ε)(α× id)H ′, where H ′ is the
homotopy satisfying ∂H ′ +H ′∂ = ∆2 − T∆1.

By Lemma 3.4, we have ϕ = [ϕ1 ϕ2] ' [0 ϕ′
2], where ϕ

′
2 = ϕ1 −Gα. Assuming

that p = 2, or p > 2 and n is even, and using the relation given in Lemma 5.3, we can
simplify ϕ′

2 as follows:

ϕ′
2 = (ε⊗ ε)(id× α)H1 + (ε⊗ ε)(α× id)H2 − (ε⊗ ε)(α× id)H ′α

= (ε⊗ ε)(α× id)[−TH1 +H2 −H ′α]

= (ε⊗ ε)(α× α)H∆.

(9)

To complete the proof we need to show that

(ε⊗ ε)(α× α)H∆: P → Σ2n−1k

is homotopy equivalent to a chain map of the form (Σnu)α, where u : P → Σn−1k.

Then the result will follow from Lemma 3.4. Note that if ζ̂ : P → Σnk is the chain
map associated to ζ, then we have

(ε⊗ ε)(α× α)H∆ = (ζ̂ ⊗ ζ̂)H∆.

Since H∆ is a homotopy between ∆ and T∆, if k = F2, then the cohomology
class associated to this chain map is the Steenrod square Sqn−1ζ by the classical
definition of Steenrod squares over F2 (see [15, page 272]). For an arbitrary field k
of characteristic 2, we need to take the Sqn−1 action on H∗(G, k) as the semilinear
extension of Sqn−1 action on H∗(G,F2) as defined in the introduction. The reason
for taking semilinear extension rather than the usual linear extension is that if we
multiply ζ with some λ ∈ k, then the homotopy class of the chain map (ζ̂ ⊗ ζ̂)H∆
is multiplied by λ2. This can be easily seen by using the bar resolution and taking a
specific homotopy for H∆ (see [2, page 142].)

For p > 2, observe that the chain complex P⊗P decomposes as P⊗P = D+ ⊕
D−, where

D+ = (id + T )(P⊗P) and D− = (id− T )(P⊗P).

Note that D− has zero homology, so there is a contracting homotopy s : D− →
Σ−1D−. Using this homotopy, we can choose the homotopy H between id and T
as the composition s(id− T ) : P⊗P → P⊗P. But then the image of H will be in
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D− and we will have

(ε⊗ ε)(α⊗ α)H∆ = 0

because the composition (ε⊗ ε)(α⊗ α)(id− T ) is equal to zero.

Note that although we made a specific choice for (H1,H2) in the proposition above,
the same conclusion holds for every choice of homotopies H1 and H2. This follows
from the following proposition:

Proposition 5.5. If ψ(H1, H2) lifts to a chain map ψ̃ satisfying πψ̃ = ψ for some
choice of homotopies H1 and H2, then ψ(H ′

1,H
′
2) lifts to a chain map ψ̃ satisfying

πψ̃ = ψ for any other choice of homotopies (H ′
1,H

′
2).

Proof. If H1 and H2 are replaced with H ′
1 and H ′

2, then H ′
1 = H1 + f1 and H ′

2 =
H2 + f2 for some chain maps f1 and f2. In Equation 9, if we replace (H1,H2) with
(H ′

1,H
′
2), then the difference between the old ϕ′

2 = (ε⊗ ε)(α× α)H∆ and the new
one would be

(ε⊗ ε)(id× α)f1 + (ε⊗ ε)(α× id)f2.

It is clear that the homotopy class of this map is a multiple of α. So, the new ψ′
2 is a

multiple of α if and only if the old one is.

Now to complete the proof of Theorem 1.3 we prove the following:

Proposition 5.6. For some (every) choice of H1 and H2, the chain map ψ(H1,H2)
lifts to a chain map ψ̃ if and only if there is a chain map ∆: P(ζ) → P(ζ)⊗P(ζ)
satisfying (id⊗ ε)∆ ' id and (ε⊗ id)∆ ' id.

Proof. First suppose that there is a lifting ψ̃. Then, we take ∆ as ψ̃ and show that it
satisfies the required conditions. We will only show that (id⊗ ε)∆ ' id. The second
homotopy equivalence can be shown in a similar way.

Since the restriction of id⊗ ε on Q⊗Q is the zero map, we have

(id⊗ ε)ψ̃ =

[
id⊗ ε 0 0
0 0 id⊗ ε

]∆1 H1

∆2 H2

0 ∆

 =

[
(id⊗ ε)∆1 (id⊗ ε)H1

0 (id⊗ ε)∆

]
.

Both (id⊗ ε)∆1 and (id⊗ ε)∆ are homotopic to identity maps. In fact, by choosing
P as the bar resolution and ∆ as the diagonal approximation given by

∆([g1, . . . , gn]) =
n∑
i=0

[g1, . . . , gi]⊗ (g1 · · · gi)[gi+1, . . . , gn]

we can assume that (id⊗ ε)∆ = id. Similarly, we can choose a ∆1 such that
(id⊗ ε)∆1 = id.

Now, it is easy to see that (id⊗ ε)H1 is a chain map and (id⊗ ε)ψ̃ ' id if and only if
(id⊗ ε)H1 is homotopic to a map of the form (Σnu)α for some u. By Proposition 5.6,
we can replace H1 with another homotopy up to a chain map. Replacing H1 with
H ′

1 = H1 −∆(id⊗ ε)H1, we get (id⊗ ε)H ′
1 ' 0. This gives (id⊗ ε)ψ̃ ' id as desired.

For the converse, assume that there is a chain map ∆: P(ζ) → P(ζ)⊗P(ζ) satis-
fying (id⊗ ε)∆ ' id and (ε⊗ id)∆ ' id. We need to show that the composition π∆
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is homotopy equivalent to ψ(H1,H2) for some H1 and H2. For this, it is enough to
show that π∆ fits into a diagram as in Proposition 5.1. Note that (id⊗ ε)π∆ ' id,
so there exists fQ and fP which makes the following diagram commute

0 // Q //

fQ

��

P(ζ) //

π∆

��

P //

fP

��

0

0 // (Q⊗P)⊕ (P⊗Q) //

id⊗ε
��

P(ζ ⊕ ζ) //

id⊗ε
��

P⊗P //

id⊗ε
��

0

0 // Q // P(ζ) // P // 0.

Since id⊗ ε induces homotopy equivalences Q⊗P ' Q and P⊗P ' P, we have
fP ' ∆ and fQ is homotopic to ∆1 when it is composed with the projection toQ⊗P.
Repeating this argument also for ε⊗ id, we get fQ ' (∆1,∆2). This completes the
proof.

In the case where k is an arbitrary field of characteristic 2, the Steenrod squares in
Theorem 1.3 are semilinear extensions of usual Steenrod squares over F2. To illustrate
the importance of this point, we give the following example.

Example 5.7. Let G = Z/2× Z/2 and {x, y} be a basis for H1(G,F2). Take
ζ = x+ λy for some λ ∈ k. A direct computation with Lζ-modules shows that ζ is
productive if and only if λ ∈ F2. Now, we can also see this by Theorem 1.3. Since

S̃q
0
(x+ λy) = x+ λ2y, we have S̃q

0
(ζ) ∈ (ζ) if and only if λ2 = λ. In fact, in this

case one can explicitly write down a few steps of the homotopy between ∆ and T∆

in the bar resolution and see that if ζ̂ : P1 → k is a map representing ζ, then S̃q
0
(ζ)

is represented by the composition

P1
// P1 ⊗P1

ζ̂⊗ζ̂
// k ,

where the first map is given by [g] → [g]⊗ [g] on the standard basis of the bar reso-
lution.

6. Semi-productive elements

In this section, we introduce the notion of semi-productive elements and prove
Theorem 1.5 stated in the introduction. The arguments used in this section are very
similar to the arguments used in [4, Section 11].

Let k be a field of characteristic p > 0 and let ζ ∈ Hn(G, k) be a nonzero coho-
mology class where n > 1. We say ζ is semi-productive if ζ annihilates Ext∗kG(Lζ , k).
Recall that ζ acts on Ext∗kG(Lζ , k) via the map

ExtpkG(k, k)⊗ ExtqkG(Lζ , k) → Extp+qkG (Lζ , k)

which can be defined in various ways, one of which is the Yoneda splice over k. Note
that in this case, the Yoneda splice coincides with the outer product, hence up to a
sign, this product is the same as the product defined by first tensoring the extension
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for ζ by Lζ and then splicing it over Lζ (see [7, Section 6] for more details). So, we
can conclude the following:

Proposition 6.1. If ζ is a productive element, then it is semi-productive.

If p is odd and the degree of ζ is even, then ζ is productive, hence it is semi-
productive. So there is nothing to study when p is odd. Therefore, from now on, we
assume that k is a field of characteristic 2.

Note that the converse of Proposition 6.1 is not true in general. We will show
later that if a cohomology class is a nonzero divisor, then it is semi-productive. This
allows us to give examples of semi-productive elements which are not productive (see
Example 6.8).

For studying semi-productive elements, the following commuting diagram is very
useful

ζ̂∗
// Exti+nkG (k, k)

j∗
//

ζ·
��

ExtikG(Lζ , k)
δ //

ζ·
��

Exti+1
kG (k, k)

ζ̂∗
//

ζ·
��

Exti+n+1
kG (k, k) //

ζ·
��

ζ̂∗
// Exti+2n

kG (k, k)
j∗

// Exti+nkG (Lζ , k)
δ // Exti+n+1

kG (k, k)
ζ̂∗

// Exti+2n+1
kG (k, k) // ,

where the top and the bottom row comes from the short exact sequence

0 // Lζ
j

// Ωnk
ζ̂

// k // 0

and the vertical maps are given by multiplication by ζ. Note that ζ̂∗ can also be
expressed as multiplication by ζ, i.e., we have ζ̂∗(x) = ζx for every x ∈ ExtikG(k, k).

Observe that for every x ∈ Exti+nkG (k, k), we have ζj∗(x) = j∗(ζx) = j∗ζ̂∗(x) = 0.
So, for every u ∈ ExtikG(Lζ , k), the product ζu is uniquely determined by δ(u). Also

note that if u ∈ ExtikG(Lζ , k), then δ(ζu) = ζδ(u) = ζ̂∗δ(u) = 0. This means that
there is a y ∈ Exti+2n

kG (k, k) such that ζu = j∗(y). This element y is uniquely defined
modulo the ideal (ζ) generated by ζ. Hence, we can conclude that for all i > 0, the
map

ExtikG(Lζ , k)
ζ·−→ Exti+nkG (Lζ , k)

induces a k-linear map

µ : Anni+1(ζ) → Exti+2n
kG (k, k)/(ζ),

where Anni+1(ζ) is the subspace formed by elements v ∈ Exti+1
kG (k, k) such that

ζv = 0. By the definition of this map, we have the following:

Lemma 6.2. Let ζ ∈ Hn(G, k) be a nonzero cohomology class of degree n, where
n > 1. Then, ζ is semi-productive if and only if µ(v) = 0 for every v ∈ Exti+1

kG (k, k)
satisfying ζv = 0, where i > 0.

In the rest of the section, we analyze the obstructions µ(v) and relate it to Massey
products and then to Steenrod operations. We first recall the definition of a triple
Massey product.

Let u, v, w ∈ H∗(G, k) be homogeneous cohomology classes and let û : P → ΣrP,
v̂ : P → ΣsP, and ŵ : P → ΣtP be chain maps whose homotopy classes are u, v, w,
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respectively. Suppose that uv = 0 and vw = 0. Then there exist homotopies H and K
satisfying ∂H +H∂ = ûv̂ and ∂K +K∂ = v̂ŵ. These equations give that Hŵ + ûK
is a chain map P → Σr+s+t−1P, so it defines a cohomology class in Hr+s+t−1(G, k).
This cohomology class is well-defined modulo the subspace generated by u and w. The
triple Massey product 〈u, v, w〉 is defined as the set of homotopy classes of chain maps
Hŵ + ûK over all possible choices of H and K. Alternatively, one can consider the
triple Massey product as an equivalence class and denote by 〈u, v, w〉 a representative
of this equivalence class. We use this second approach here in this paper.

Given u, v, w ∈ H∗(G, k) as above, let P(u) and P(w) denote the extensions with
extension classes u and v, respectively. We have a diagram of the following form

w· // [P,Σs+t−1P]
π∗

//

u·
��

[P(w),Σs+t−1P]
j∗

//

u·
��

[P,ΣsP]
w· //

u·
��

[P,Σs+tP] //

u·
��

w· // [P,Σr+s+t−1P]
π∗

// [P(w),Σr+s+t−1P]
j∗

// [P,Σr+sP]
w· // [P,Σr+s+tP] // ,

where the horizontal sequences comes from the extension

0 // Σt−1P
j

// P(w)
π // P // 0.

A diagram chase similar to the one used above shows that for every v ∈ [P,ΣsP]
satisfying uv = 0 = vw, there is a class x ∈ [P,Σr+s+t−1P] well-defined modulo

J(u,w) := u[P,Σs+t−1P] + w[P,Σr+s−1P]

such that π∗(x) = uy, where y ∈ [P(u),Σs+t−1P] is a class satisfying j∗(y) = v. We
have the following:

Lemma 6.3. The cohomology class x ∈ [P,Σr+s+t−1P] can be taken as the triple
Massey product 〈u, v, w〉 modulo J(u,w).

Proof. Let K be a contracting homotopy for v̂ŵ. Then, we can take

y ∈ [P(w),Σs+t−1P]

as the homotopy class of the chain map given by ŷ = [v̂ K]. This means that uy is
represented by ûŷ = [ûv̂ ûK]. Let H be a contracting homotopy for ûv̂. Then, by
Lemma 3.4, we have ûŷ ' [0 ûK +Hŵ]. So, x can be taken as the homotopy class of
the chain map ûK +Hŵ. Hence, x ≡ 〈u, v, w〉 modulo J(v, w).

As a consequence, we obtain the following:

Lemma 6.4. Let ζ ∈ Hn(G, k) be a nonzero cohomology class of degree n, where
n > 1, and let µ be the assignment as in Lemma 6.2. Then, µ(v) = 〈ζ, v, ζ〉 mod (ζ)
for every v ∈ Hi+1(G, k), i > 0, which satisfies ζv = 0.

Proof. If we take u = w = ζ and s = i+ 1 in the second commuting diagram above,
we obtain a diagram similar to the first commuting diagram above. We just need to
show that [P(ζ),Σn+iP] is isomorphic to ExtikG(Lζ , k). Note that for i > 0, we have

[P(ζ),Σn+iP] ∼= [ΓnP(ζ),Σn+iP],

where ΓnP(ζ) denotes the truncation of P at n. The complex ΓnP(ζ) has trivial
cohomology except at dimension n and Hn(ΓnP(ζ), k) ∼= Lζ . So, ΓnP(ζ) is homotopy



400 ERGÜN YALÇIN

equivalent to ΣnP(Lζ), where P(Lζ) is a projective resolution of Lζ . This gives that

[P(ζ),Σn+iP] ∼= [ΣnP(Lζ),Σ
n+iP] ∼= ExtikG(Lζ , k).

This completes the proof.

Combining the lemmas above, we obtain the following:

Proposition 6.5. Let ζ ∈ Hn(G, k) be a nonzero cohomology class of degree n, where
n > 1. Then, ζ is semi-productive if and only if 〈ζ, v, ζ〉 ≡ 0 mod (ζ) for every v ∈
H∗(G, k) which satisfies ζv = 0.

Proposition 6.5 completes the proof of (i) ⇔ (ii) in Theorem 1.5. For the equiva-
lence of the statements (ii) and (iii), we quote the following result by Hirsch [11].

Theorem 6.6 (Hirsch [11]). Let X be a simplicial complex. Then for every u,
ζ ∈ H∗(X,F2), we have

〈ζ, u, ζ〉 ≡ uSqn−1ζ mod (ζ).

This completes the proof of Theorem 1.5. A proof for Hirsch’s theorem can be found
in [11]. Although the theorem is for k = F2, one can easily extend the argument so
that it holds for any field of characteristic 2. In fact, for the cohomology of groups,
one can easily give a separate proof for Hirsch’s theorem using the methods in this
paper.

Remark 6.7. The similarities between the statements of Theorem 1.3 and Theorem 1.5
suggest that the Massey product approach could be used to prove Theorem 1.3 as
well. For this, one would need to generalize the notion of triple Massey product
〈ζ, u, ζ〉 to the case where u is an element in H∗(G,M) for some kG-module M . One
would also need to prove a more general version of Hirsch’s theorem. We did not take
this approach here since proving this more general version of Hirsch’s theorem is not
much shorter than proving Theorem 1.3. We also find the methods used in the proof
of Theorem 1.3 more interesting and possibly more useful for proving other theorems.

We end the paper with an example which shows that being semi-productive is a
strictly weaker condition than being productive.

Example 6.8. LetG = Z/2× Z/2 and let {x, y} be a basis forH1(G,F2). Consider the
class ζ = x2 + xy + y2 ∈ H2(G,F2). Since ζ is a nonzero divisor, it is semi-productive
by Theorem 6.5. But, by Theorem 1.2, ζ is not productive since Sq1(ζ) = xy(x+ y)
is not divisible by x2 + xy + y2.

Unfortunately it is not as easy to find cohomology classes which are not semi-
productive. For k = F2, we do not know if there exists a nonzero cohomology class
ζ ∈ Hn(G, k) which is not semi-productive. On the otherhand, for an arbitrary field
k of characteristic 2, it is possible to construct such examples. The following example
is provided to us by Martin Langer. It comes from his earlier work on secondary
multiplications in Tate cohomology (see [12, Remark 3.6]).

Example 6.9. Let G = Q8 be the quaternion group of order 8 and k be a field of
characteristic 2 which includes a primitive third root of unity. Let α ∈ k such that
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α2 + α+ 1 = 0 and let x, y be generators of H1(G,F). Then, if we take ζ = αx+ y

and u = α2x+ y, then we get ζu = 0, but S̃q
0
(ζ)u = (α2x+ y)2 = αx2 + y2 is not a

multiple of ζ in H∗(G, k). So, ζ is not semi-productive.
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