Open Access
March, 1993 On Reaching a Consensus Using Degroot's Iterative Pooling
Gustavo L. Gilardoni, Murray K. Clayton
Ann. Statist. 21(1): 391-401 (March, 1993). DOI: 10.1214/aos/1176349032

Abstract

We consider a group of k experts each having a subjective probability distribution for a parameter $\theta$. If the members of the group are allowed to know the others' opinions and they appreciate the others' skills, it is likely that each expert will modify his distribution to account for this new information. This process can be continued indefinitely leading to an iterative pooling process. The main issue is whether the experts'distributions will converge towards a common limit or consensus. Several authors have considered this iterative process when the experts' distributions at a given stage are linear opinion pools of the distributions at the previous stage. In this paper we extend the model for the specific case where the experts use logarithmic opinion pools and, more broadly, for pools in a wide class that generalizes both the linear and the logarithmic pools. It is shown that the consensus properties in the logarithmic pool case are essentially the same as in the linear pool case, and that this fact uniquely characterizes both pools in the wide class mentioned above.

Citation

Download Citation

Gustavo L. Gilardoni. Murray K. Clayton. "On Reaching a Consensus Using Degroot's Iterative Pooling." Ann. Statist. 21 (1) 391 - 401, March, 1993. https://doi.org/10.1214/aos/1176349032

Information

Published: March, 1993
First available in Project Euclid: 12 April 2007

zbMATH: 0770.62001
MathSciNet: MR1212183
Digital Object Identifier: 10.1214/aos/1176349032

Subjects:
Primary: 62A15
Secondary: 39B12 , 60J20 , 90A07

Keywords: Bayesian inference , expert opinions , linear opinion pool , logarithmic opinion pool , quasi-linear opinion pool

Rights: Copyright © 1993 Institute of Mathematical Statistics

Vol.21 • No. 1 • March, 1993
Back to Top