Open Access
March, 1993 E-Optimal Designs for Polynomial Regression
Friedrich Pukelsheim, William J. Studden
Ann. Statist. 21(1): 402-415 (March, 1993). DOI: 10.1214/aos/1176349033

Abstract

E-optmal designs for the full mean parameter vector, and for many subsets in univariate polynomial regression models are determined. The derivation is based on the interplay between E-optimality and scalar optimality. The scalar parameter systems are obtained as transformations of the coefficient vector c of the Chebyshev polynomial.

Citation

Download Citation

Friedrich Pukelsheim. William J. Studden. "E-Optimal Designs for Polynomial Regression." Ann. Statist. 21 (1) 402 - 415, March, 1993. https://doi.org/10.1214/aos/1176349033

Information

Published: March, 1993
First available in Project Euclid: 12 April 2007

zbMATH: 0787.62075
MathSciNet: MR1212184
Digital Object Identifier: 10.1214/aos/1176349033

Subjects:
Primary: 62K05

Keywords: approximate design theory , Chebyshev polynomial , c-optimality , E-optimality , parameter subset optimality , polynomial regression

Rights: Copyright © 1993 Institute of Mathematical Statistics

Vol.21 • No. 1 • March, 1993
Back to Top