Open Access
October, 1994 Asymptotic Expansions for the Distributions of Stopped Random Walks and First Passage Times
Tze Leung Lai, Julia Qizhi Wang
Ann. Probab. 22(4): 1957-1992 (October, 1994). DOI: 10.1214/aop/1176988491

Abstract

Let $S_n = X_1 + \cdots + X_n, n \geq 1$, be a $d$-dimensional random walk and let $T_a = \inf\{n \geq n_a: ng(S_n/n) \geq a\}$, where $n_a = o(a)$. Let $\theta = g(EX_1), \hat{\theta}_n = g(S_n/n)$ and $\Delta_a = T_a\hat{\theta}_{T_a} - a$. Edgeworth-type expansions are developed for $P\{T_a = n, y_1 \leq \Delta_a \leq y_2\}$ and for the distribution functions of $T_a$ and of $\sqrt T_a(h(\hat{\theta}_{T_a}) - h(\theta))$, where $h$ is a real-valued function such that $h'(\theta) \neq 0$.

Citation

Download Citation

Tze Leung Lai. Julia Qizhi Wang. "Asymptotic Expansions for the Distributions of Stopped Random Walks and First Passage Times." Ann. Probab. 22 (4) 1957 - 1992, October, 1994. https://doi.org/10.1214/aop/1176988491

Information

Published: October, 1994
First available in Project Euclid: 19 April 2007

zbMATH: 0843.60046
MathSciNet: MR1331212
Digital Object Identifier: 10.1214/aop/1176988491

Subjects:
Primary: 60G40
Secondary: 60F05 , 60J15 , 62L12

Keywords: bootstrap , boundary crossing probabilities , Edgeworth expansions , nonlinear renewal theory , Random walks

Rights: Copyright © 1994 Institute of Mathematical Statistics

Vol.22 • No. 4 • October, 1994
Back to Top