Abstract
Consider two independent sequences $X_1,\ldots, X_n$ and $Y_1,\ldots, Y_n$. Suppose that $X_1,\ldots, X_n$ are i.i.d. $\mu X$ and $Y_1,\ldots, Y_n$ are i.i.d. $\mu_Y$, where $\mu_X$ and $\mu_Y$ are distributions on finite alphabets $\sum_X$ and $\sum_Y$, respectively. A score $F: \sum_X \times \sum_Y \rightarrow \mathbb{R}$ is assigned to each pair $(X_i, Y_j)$ and the maximal nonaligned segment score is $M_n = \max_{0\leq i, j \leq n - \Delta, \Delta \geq 0}\{\sum^\Delta_{l=1}F(X_{i+l}, Y_{j+l})\}$. Our result is that $M_n/\log n \rightarrow \gamma^\ast(\mu_X, \mu_Y)$ a.s. with $\gamma^\ast$ determined by a tractable variational formula. Moreover, the pair empirical measure of $(X_{i+l}, Y_{j+l})$ during the segment where $M_n$ is achieved converges to a probability measure $\nu^\ast$, which is accessible by the same formula. These results generalize to $X_i, Y_j$ taking values in any Polish space, to intrasequence scores under shifts, to long quality segments and to more than two sequences.
Citation
Amir Dembo. Samuel Karlin. Ofer Zeitouni. "Critical Phenomena for Sequence Matching with Scoring." Ann. Probab. 22 (4) 1993 - 2021, October, 1994. https://doi.org/10.1214/aop/1176988492
Information