Tokyo Journal of Mathematics

Notes on a $p$-adic Exponential Map for the Picard Group

Wataru KAI

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


For proper flat schemes over complete discrete valuation rings of mixed characteristic, we construct an isomorphism of certain subgroups of the Picard group and the first cohomology group of the structure sheaf. When the Picard functor is representable and smooth, our construction recovers and gives finer information to the isomorphism coming from its formal completion. An alternative proof of an old theorem of Mattuck is given.

Article information

Tokyo J. Math., Volume 42, Number 1 (2019), 35-49.

First available in Project Euclid: 18 July 2019

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Primary: 14C22: Picard groups


KAI, Wataru. Notes on a $p$-adic Exponential Map for the Picard Group. Tokyo J. Math. 42 (2019), no. 1, 35--49.

Export citation


  • \BibAuthorsA. Grothendieck and J. Dieudonné, Éléments de Géométrie Algébrique I, III. Publ. Math. I.H.E.S., nos. 4, 11, 17. 1960, 1961, 1963.
  • \BibAuthorsA. Mattuck, Abelian varieties over $p$-adic ground fields, Ann. of Math. 62 (1955), no. 1, 92–119.
  • \BibAuthorsJ. S. Milne, Jacobian Varieties. In Arithmetic Geometry (Storrs, Conn., 1984), pp. 167–212. Springer-Verlag, New York, 1986.
  • \BibAuthorsJ. Neukirch, Algebraische Zahlentheorie, Springer-Verlag, Berlin Heidelberg, 1992. ISBN: 978-3-540-37547-0
  • \BibAuthorsM. Raynaud, Spécialisation du foncteur de Picard, Publ. Math. I.H.E.S., no. 38, 27–76, 1970.