Tokyo Journal of Mathematics

On the Moduli Space of Pointed Algebraic Curves of Low Genus II ---Rationality---

Tetsuo NAKANO

Full-text: Open access

Abstract

We show that the moduli space $\mathcal{M}_{g,1}^N$ of pointed algebraic curves of genus $g$ with a given numerical semigroup $N$ is an irreducible rational variety if $N$ is generated by less than five elements for low genus ($ g \leq 6$) except one case. As a corollary to this result, we get a computational proof of the rationality of the moduli space $\mathcal{M}_{g,1}$ of pointed algebraic curves of genus $g$ for $1 \leq g \leq 3$. If $g \leq 5$, we also have that $\mathcal{M}_{g,1}^N$ is an irreducible rational variety for any semigroup $N$ except two cases. It is known that such a moduli space $\mathcal{M}_{g,1}^N$ is non-empty for $g \leq 7$.

Article information

Source
Tokyo J. Math., Volume 31, Number 1 (2008), 147-160.

Dates
First available in Project Euclid: 27 August 2008

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1219844828

Digital Object Identifier
doi:10.3836/tjm/1219844828

Mathematical Reviews number (MathSciNet)
MR2426799

Zentralblatt MATH identifier
1145.14025

Citation

NAKANO, Tetsuo. On the Moduli Space of Pointed Algebraic Curves of Low Genus II ---Rationality---. Tokyo J. Math. 31 (2008), no. 1, 147--160. doi:10.3836/tjm/1219844828. https://projecteuclid.org/euclid.tjm/1219844828


Export citation

References

  • R-O. Buchweitz, On deformations of monomial curves, Séminaire sur les Singularités des surfaces, Lecture Notes in Math. 777 (1980), Springer, 205–220.
  • J. J. Cannon and C. Playoust, An Introduction to Algebraic Programming with Magma (Draft), Springer, 2001.
  • F. Catanese, On the rationality of certain moduli spaces related to curves of genus 4, Algebraic Geometry, Proceedings, Ann Arbor 1981, Lecture Notes in Math. 1008 (1983), Springer, 30–50.
  • D. Cox, J. Little and D. O'Shea, Ideals, varieties, and algorithms (second edition), Springer, 1996.
  • W. Decker, G. Pfister and H. Schönemann, primdec.lib, A Singular 3.0 library for computing primary decomposition and radical of ideals, (2005).
  • G.-M.Greuel, G. Pfister and H. Schönemann, Singular 3.0, A Computer Algebra System for Polynomial Computations, Centre for Computer Algebra, University of Kaiserslautern (2005)., http://www.singular.uni-kl.de
  • Y. Kawamata, The geometry of projective spaces (in Japanese), Asakura Shoten, 2001.
  • J. Kollar and F.O. Schreyer, The moduli of curves is stably rational for $g \leq 6$, Duke Math. J., 51 (1984), 239–242.
  • J. Komeda, On the existence of Weierstrass gap sequences on curves of genus $\leq$ 8, J. Pure Appl. Alg., 97 (1994), 51–71.
  • B. Martin, Computing Versal Deformations with Singular, Algorithmic Algebra and Number Theory, 1999, Springer, 283–293.
  • B. Martin, deform.lib, A Singular 3.0 library for computing miniversal deformation of singularities and modules, (2005).
  • T. Nakano and T. Mori, On the moduli space of pointed algebraic curves of low genus–-a computational approach–-, Tokyo J. Math., 27 (2004), 239–253.
  • H.C. Pinkham, Deformaitions of algebraic varieties with $G_m$ action, astérisque, 20 (1974), société mathématique de france.