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Abstract. We show that the moduli space MN
g,1 of pointed algebraic curves of genus g with a given numerical

semigroup N is an irreducible rational variety if N is generated by less than five elements for low genus (g ≤ 6)
except one case. As a corollary to this result, we get a computational proof of the rationality of the moduli space

Mg,1 of pointed algebraic curves of genus g for 1 ≤ g ≤ 3. If g ≤ 5, we also have that MN
g,1 is an irreducible

rational variety for any semigroup N except two cases. It is known that such a moduli space MN
g,1 is non-empty for

g ≤ 7.

1. Introduction

The purpose of this note is to show that the set of all pointed algebraic curves of genus
g with a given Weierstrass gap sequence at the point is parametrized with a finite number of
parameters in a generically one-to-one manner if g is small. This note is the second part of
the preceding paper [12]. So before stating the main result, let us briefly review the results
obtained in [12].

Let N0 := {0, 1, 2, . . . } be the additive semigroup of nonnegative integers and N ⊂ N0

a subsemigroup of N0. We call N a numerical semigroup of genus g if the complement
N0 − N = {j1, j2, . . . , jg } (j1 < j2 < · · · < jg ) consists of g elements.

Consider a couple (X, P ) of a nonsingular projective curve X of genus g over the com-
plex number field C and a point P ∈ X. The coarse moduli space of all isomorphism classes
of such couples is denoted by Mg,1. Set NP := {n ∈ N0 | there exists a rational function
f on X such that f is regular on X − {P } and has a pole of order exactly n at P } ⊂ N0.
Then NP is a numerical semigroup of genus g whose complement in N0 is the Weierstrass
gap sequence at P .

For a given numerical semigroup N of genus g , let MN
g,1 be the moduli space of all

isomorphism classes of pointed algebraic curves (X, P ) with NP = N . Then MN
g,1 is a

subscheme of Mg,1 and we have a direct sum decomposition of Mg,1: Mg,1 = ⋃
N MN

g,1,
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where N runs through all possible numerical semigroups of genus g . We note that MN
g,1 is

known to be non-empty for any numerical semigroup N of genus g ≤ 7 by [9].
In the first part [12], we calculated explicitly the defining equations of the projectivized

moduli space MN
g,1 in the ambient weighted projective space for any numerical semigroup

N of genus g ≤ 5 except a few cases. We also computed the dimension and showed the

irreducibility of MN
g,1 utilizing these defining equations.

Our main result in this note is that the moduli space MN
g,1 is an irreducible rational

variety if N is generated by less than five generators for g ≤ 6 except N = N(6)5 (see Table
2 in Appendix A for the notation of the semigroup). From this, we get several corollaries such
as:

(1) a computational proof of the rationality of the moduli space Mg,1 of pointed alge-
braic curves of genus g for 1 ≤ g ≤ 3,

(2) the rationality of MN
g,1 for any semigroup N of genus 1 ≤ g ≤ 5 except two cases,

(3) an interesting example of deformation of a monomial curve whose negative base
space consists of two irreducible components.

We note that in [12], we observed that many of these MN
g,1 are isomorphic to weighted

projective spaces so that we claimed that MN
g,1 is unirational in these cases ([12; Corollary

3.4]), which is not good enough since they are actually rational. So we improve this weak
corollary to the stronger Corollary 3.5 in this note.

We also note that the moduli space Mg of all algebraic curves of genus g is known to be
rational for g ≤ 6 ([8]), and M4,1 is proved to be rational in [3], which are much deeper than
our computational result.

We used the computer algebra system SINGULAR [6] for the computations of the defining
ideal Js of the negative base space of the miniversal deformation of a monomial curve of N

and the primary decomposition of Js. We also used the computer algebra system Magma [2]
for auxiliary computations.

2. Preliminaries

We first review the relation of deformation of monomial curves and MN
g,1 (Pinkham’s

theory) as needed later. A similar summary is found in [12; sec. 2]. For more details, see [13;
Cap. IV].

Let N ⊂ N0 be a numerical semigroup of genus g . We simply call a numerical semi-
group a semigroup for short from now on. Then N is finitely generated as semigroup and is
expressed as N = 〈a1, a2, . . . , am〉 (ai ∈ N0). The monomial ring BN of N is defined as
BN := C[ta1, ta2 , . . . , tam ] ⊂ C[t] where C[t] is the polynomial ring of 1 variable over C,
and CN := Spec BN is the monomial curve of N .
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Given a semigroup N of genus g , there always exists an algebraic miniversal deformation
Φ : X → S of the monomial curve CN . Namely,

Φ : X = Spec C[x1, x2, . . . , xn, t1, . . . , tr ]/Es → S = Spec C[t1, t2, . . . , tr ]/Is

is a flat morphism such that Φ−1(P ) ∼= CN , P is the origin of S. Es and Is are ideals of

the polynomial rings, and the morphism Φ is induced by the natural projection. Let T 1(CN)

be the C-vector space of isomorphism classes of the first order deformations of CN . Then

T 1(CN) is naturally isomorphic to the Zariski tangent space of S at P and r = dimC T 1(CN).
The 1-dimensional algebraic torus C× acts naturally on the monomial curve CN , which in-
duces a natural algebraic C×-action on X and S such that Φ is C×-equivariant. We may
suppose C× acts on X and S by α ◦ xi := αai xi and α ◦ ti := α−ei ti (ai, ei ∈ Z, α ∈ C×).

We will use only the part of S with weight ei < 0 (the negative part of the base space
S). Namely, let {i1, . . . , il} ⊂ {1, 2, . . . , r} be the integers with eij ≥ 0 and set S− :=
{ti1 = · · · = til = 0} ∩ S. We restrict the miniversal deformation Φ to S− and get ϕ :
X ′ := Φ−1(S−) → S−. Once again, we reset X ′ = Spec C[x1, x2, . . . , xn, t1, . . . , ts ]/Fs,
S− = Spec C[t1, t2, . . . , ts ]/Js so that C× acts on ti with weight −ei > 0 and on xi with
weight ai . Thus C[x1, x2, . . . , xn, t1, . . . , ts ] and C[t1, t2, . . . , ts ] are weighted polynomial
rings with weight(xi) = ai and weight(ti ) = −ei > 0 and Fs and Js are homogeneous ideals
in them.

We then projectivize each fiber of ϕ by adding one point. More precisely, take a set of
generators of the defining ideal Fs of X ′:

Fs = 〈Fi |1 ≤ i ≤ m〉 ⊂ C[x1, x2, . . . , xn, t1, . . . , ts ] .

Introduce a new indeterminate xn+1 with weight 1 and substitute tix
−ei

n+1 in the variable ti of

Fi . Then we get a polynomial F ′
i ∈ C[t1, . . . , ts , x1, . . . , xn, xn+1], which is homogeneous

with respect to the variables (x1, . . . , xn+1). Set Fs′ := 〈F ′
i 〉 and we get a projective flat mor-

phism π : Proj C[x1, . . . , xn, xn+1, t1, . . . , ts ]/Fs′ → S−. Then any fiber of π is a projective
algebraic curve and the equation {xn+1 = 0} gives a section of π so that π is a flat family of
projective pointed algebraic curves over S−.

The fundamental theorem of Pinkham ([13; Theorem (13.9)]) states:

THEOREM 2.1. Set U := {x ∈ S− | the fiber ϕ−1(x) is smooth} ⊂ S−. If U is not

empty, then there exists an isomorphism U/C× ∼= MN
g,1. This isomorphism is given by

U � x 
→ π−1(x) ∈ MN
g,1.

If U is non-empty, we say the monomial curve CN is negatively smoothable. Thus MN
g,1

is non-empty if and only if CN is negatively smoothable.
We next review the well-known fact that the weighted projective space Pn

(e0,e1,...,en)

with weights (e0, e1, . . . , en) is rational. We also include a proof (taken from [7]) in order to
prepare some notations for later use.
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PROPOSITION 2.2. Pn
(e0,e1,...,en) is rational.

PROOF. Let Z := Pn be the ordinary projective space with homogeneous coordinates
(α0, . . . , αn), and (β0, . . . , βn) the homogeneous coordinates of W := Pn

(e0,e1,...,en). Con-

sider the finite morphism p : Z → W defined by βi := α
ei

i (0 ≤ i ≤ n). If the action
of the group G := Ze0 × · · · × Zen on Z is defined by (g0, . . . , gn) ◦ (α0, . . . , αn) :=
(ζ

g0
e0 α0, . . . , ζ

gn
en αn), where Zei := Z/eiZ, (g0, . . . , gn) ∈ G and ζei is the primitive ei-th

root of unity, then W is identified with the quotient space of this action.
We consider the affine open pieces Z0 := {α0 �= 0}(∼= An) ⊂ Z with inhomo-

geneous coordinates (γ1, . . . , γn) = (α1/α0, . . . , αn/α0) and W0 := {β0 �= 0} ⊂ W .
Let H := Ze1 × · · · × Zen be the subgroup of G and consider the action of H on

Z0 ∼= An defined by (g1, . . . , gn) ◦ (γ1, . . . , γn) := (ζ
g1
e1 γ1, . . . , ζ

gn
en γn). Then the quo-

tient space V0 := Z0/H ∼= An/H is isomorphic again to an affine space An with coordi-
nates δi := γ

ei

i (1 ≤ i ≤ n). Finally, consider the Ze0 -action on V0 ∼= An defined by

g0 ◦ (δ1, . . . , δn) := (ζ
−g0e1
e0 δ1, . . . , ζ

−g0en
e0 δn). Then the restriction map p|Z0 : Z0 → W0 is

factored as Z0 → V0 ∼= An → An/Ze0
∼= W0.

Now W0 ∼= An/Ze0 is rational. Indeed, consider the abelian subgroup

K := {(m1, . . . ,mn) | e1m1 + · · · + enmn is divisible by e0} ⊂ Zn .

Then K is also an abelian free group of rank n. Let Mi := (mi1, . . . ,min)

(1 ≤ i ≤ n) be the generators of K . Then the invariant subring of the Laurent

polynomial ring C[δ1, . . . , δn, δ
−1
1 , . . . , δ−1

n ] under the induced Ze0 -action is given by

C[δM1, . . . , δMn, δ−M1 , . . . , δ−Mn ], where δMi := δ
mi1
1 . . . δ

min
n (note that mij may be neg-

ative). Thus the function field C(W0) of W0 is C(δM1, . . . , δMn), which is rational. �

3. Main Result

We state and prove our main result:

THEOREM 3.1. Let N be any numerical semigroup of genus 1 ≤ g ≤ 6 generated by

less than 5 generators. Then MN
g,1 is an irreducible rational variety except N = N(6)5.

REMARK 3.2. In the exceptional case N = N(6)5, we do not know if MN
g,1 is an irre-

ducible rational variety or not, since we cannot compute the defining ideal Js of the negative
base space S− in this case.

PROOF OF THEOREM 3.1. (i) Suppose N is generated by 2 or 3 elements. Then the

second cohomology group T 2(CN) of the cotangent complex of the monomial curve CN is
equal to {0} ([1; 4.2.1,4,2.2]). Thus the defining (obstruction) ideal Js of S− is equal to {0}.
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On the other hand, MN
g,1 is non-empty for genus g ≤ 7 by [9]. Therefore MN

g,1 is a non-

empty Zariski open subset of S−/C× which is isomorphic to a weighted projective space since

Js = {0}. Thus MN
g,1 is an irreducible rational variety from Proposition 2.2 in this case.

(ii) Suppose N is generated by 4 elements. There are 14 semigroups with 4 generators
in the range 1 ≤ g ≤ 6. Now we compute the ideal Js for these semigroups (for most semi-
groups of genus g ≤ 5, Js was computed in the first part [12]). The result is summarized in
Appendix B. For this computation, we used the computer algebra system SINGULAR [6] and
the SINGULAR library deform.lib for computing the miniversal deformations by Mar-
tin [10], [11]. We are very sorry that we cannot get the Js in the case of N(6)5 for lack of
memories.

We will show the irreducibility and rationality of MN
g,1 for the 14 semigroups except

N = N(6)5. This is done by case by case study of the generators of Js.
First we note that if N = N(5)6, N(5)10, N(5)11, N(6)14, then our computation shows

T 2(CN) = {0} and so MN
g,1 is a non-empty Zariski open subset of a weighted projective

space. Hence we are done in these cases.
Let us study the other cases. We pick up three typical and interesting cases, namely

N = N(3)4, N(6)8, N(6)15, and investigate each of them in some detail.
(a) Suppose N = N(3)4. In this case, Js is a homogeneous prime ideal so that X :=

Proj C[A,B, . . . ,K]/Js � S−/C× is an irreducible variety. In order to show Js is prime, we

used the SINGULAR library primdec.lib [5]. Since MN
g,1 is a non-empty Zariski open

subset of X, it remains to show the rationality of X.
Let Ji (1 ≤ i ≤ 6) be the generators of Js as in Appendix B. We choose the variable

D of C[A, . . . ,D, . . . ,K] whose weight is 2 (the smallest weight). Let J ′
i (1 ≤ i ≤ 6)

be the polynomial in C[a, b, c, e, . . . , k] obtained by setting D = 1, a = A, . . . , k = K

in Ji , and Js′ be the ideal generated by them. Let p : Z = P10 → W be as in

Proposition 2.2 and set V ′
0 := p−1(X ∩ {D �= 0})/H ⊂ V0 ∼= A11 and W ′

0 :=
X ∩ {D �= 0}(∼= V ′

0/Z2) ⊂ W0. Then V ′
0 is isomorphic to Spec C[a, b, c, e, . . . , k]/Js′,

and W ′
0 is isomorphic to Spec {C[a, b, c, e, . . . , k]/Js′}Z2 , where Z2 = {1, ι} acts on V0 by

ι ◦ (a, b, c, e, f, g, h, i, j, k) = (−a,−b, c,−e, f, g, h,−i,−j, k). Now V ′
0 is rational. In-

deed, from J ′
1 = J ′

3 = J ′
4 = 0, we can eliminate f, b, g respectively, and the rest of the

equations hold identically. Thus the function field C(V ′
0) of V ′

0 is the rational function field

C(a, c, e, h, i, j, k). Now C(W ′
0) is isomorphic to the invariant field C(a, c, e, h, i, j, k)Z2 .

This invariant field is C(a2, ae, ai, aj, c, h, k), which is a rational function field of dimension
7.

Similar computations work for N(4)4, N(5)4, N(5)5.N(5)9, and MN
g,1 is an irreducible

rational variety of dimension given in Table 1 for these semigroups.
(b) Suppose N = N(6)8. In this case the ideal Js is not prime and is an intersection of

two homogeneous prime ideals; Js = p1 ∩p2 (for the generators of pi , see Appendix B). Thus
S− = Y1 ∪ Y2, where Yi := V (pi ) (the affine variety defined by pi ). Both of the components
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Yi are 12-dimensional and Y1 ∩ Y2 is 11-dimensional. On the first component Y1, any fiber

of ϕ is singular. Indeed, it is clear that Y1 � A12 by eliminating the variables O,M,K from

the defining equations of Y1. Restrict ϕ to Y1 � A12 and consider the generic fiber ϕ−1(η)

(η ∈ A12 is the generic point) defined over the rational function field k := C(A, . . . , N)

(K,M omitted). From the generators of the defining ideal Fs of the total space X ′, we find

that ϕ−1(η) is defined by the following 6 equations j1, . . . , j6 in the affine space A4(k) with
variables (x, y, z,w). In the following, a monomial xaybzcwd is written as xaybzcwd which
is the output format of SINGULAR.
j_1=(-GJ)*x2y2+(J)*y4+(-HJ)*x2y+(-BJ-GJN)*xy2+(GJ2-JL)*y3-xz2+(GJL2+HJL

-IJ)*x2+(BJL-DJ-HJN)*xy+(-CJ-GJ2L+2GJN2+HJ2)*y2+(-FJ)*xz+(-2N)*z2+w2+
(DJL+GJL2N+HJLN-IJN)*x+(BJLN+2CJL+DJN-EJ-GJ2L2-2HJ2L+2HJN2)*y+(-2FJN)*z
+(AJ)*w+(-BJL2N-CJL2-DJLN+EJL+GJ2L3-2GJL2N2+HJ2L2-2HJLN2+2IJN2);

j_2=(G)*x2y2-y4+(H)*x2y+(B+GN)*xy2+(-GJ+L)*y3+(-GL2-HL+I)*x2+(-BL+D+HN)*xy
+(C+GJL-2GN2-HJ)*y2+(F)*xz+zw+(-DL-GL2N-HLN+IN)*x+(-BLN-2CL-DN+E+GJL2
+2HJL-2HN2)*y+(AJ+2FN)*z+(A)*w+(A2J+BL2N+CL2+DLN-EL-GJL3+2GL2N2-HJL2
+2HLN2-2IN2);

j_3=-x2z+(-N)*xz+(J)*yz+yw+(AJ)*y+(-JL+2N2)*z+(-L)*w+(-AJL);
j_4=-xy3+(B)*x2y+(G+N)*y3+(D)*x2+(-BN+C)*xy+(-GL+H)*y2+z2+(-BLN-CL-2DN+E+IJ)

*x+(-CN-GL2-2HL+I)*y+(A+FJ)*z+(F)*w+(AFJ+BLN2+CLN+DN2-EN+GL3+HL2-IJN
-IL);

j_5=yz-xw+(-AJ)*x+(-L)*z+(N)*w+(AJN);
j_6=-x3+(J)*xy+y2+(-JL+3N2)*x+(-JN-2L)*y+(JLN+L2-2N3)

Then the jacobian matrix m1 of the defining equations of ϕ−1(η) with respect to
(x, y, z,w) is a 6 × 4 matrix whose (i, j)-th entry m1[i, j ] is given by:

m1[1,1]=(-2GJ)*xy2+(-2HJ)*xy+(-BJ-GJN)*y2-z2+(2GJL2+2HJL-2IJ)*x+(BJL-DJ-HJN)

*y+(-FJ)*z+(DJL+GJL2N+HJLN-IJN);
m1[1,2]=(-2GJ)*x2y+(4J)*y3+(-HJ)*x2+(-2BJ-2GJN)*xy+(3GJ2-3JL)*y2+(BJL-DJ-HJN)

*x+(-2CJ-2GJ2L+4GJN2+2HJ2)*y+(BJLN+2CJL+DJN-EJ-GJ2L2-2HJ2L+2HJN2);
m1[1,3]=-2*xz+(-FJ)*x+(-4N)*z+(-2FJN);
m1[1,4]=2*w+(AJ);
m1[2,1]=(2G)*xy2+(2H)*xy+(B+GN)*y2+(-2GL2-2HL+2I)*x+(-BL+D+HN)*y+(F)*z+

(-DL-GL2N-HLN+IN);
m1[2,2]=(2G)*x2y-4*y3+(H)*x2+(2B+2GN)*xy+(-3GJ+3L)*y2+(-BL+D+HN)*x

+(2C+2GJL-4GN2-2HJ)*y+(-BLN-2CL-DN+E+GJL2+2HJL-2HN2);
m1[2,3]=(F)*x+w+(AJ+2FN);
m1[2,4]=z+(A);
m1[3,1]=-2*xz+(-N)*z;
m1[3,2]=(J)*z+w+(AJ);
m1[3,3]=-x2+(-N)*x+(J)*y+(-JL+2N2);
m1[3,4]=y+(-L);
m1[4,1]=-y3+(2B)*xy+(2D)*x+(-BN+C)*y+(-BLN-CL-2DN+E+IJ);
m1[4,2]=-3*xy2+(B)*x2+(3G+3N)*y2+(-BN+C)*x+(-2GL+2H)*y+(-CN-GL2-2HL+I);
m1[4,3]=2*z+(A+FJ);
m1[4,4]=(F);
m1[5,1]=-w+(-AJ);
m1[5,2]=z;
m1[5,3]=y+(-L);
m1[5,4]=-x+(N);
m1[6,1]=-3*x2+(J)*y+(-JL+3N2);
m1[6,2]=(J)*x+2*y+(-JN-2L);
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m1[6,3]=0;
m1[6,4]=0

Take a k-rational point P := (N,L, 0,−AJ) ∈ k4 of ϕ−1(η). Then setting x = N, y =
L, z = 0, w = −AJ , the jacobian matrix at P is:

m1(P ) =




−3IJN −EJ + JL3 −3FJN −AJ

3IN E − L3 3FN A

0 0 0 0
E + IJ − L3 I A + FJ F

0 0 0 0
0 0 0 0




Thus the rank of m1(P ) is 2 and so the generic fiber is singular at P .
On the other hand, the projectivization X2 := Proj C[A,B, . . . ,O]/p2 of the second

component Y2 is rational. Indeed, since weight(M) = 1, by setting M = 1 in the generators
of p2, we get a set of inhomogeneous generators li (1 ≤ i ≤ 5) which defines the affine part

X′
2 := X2 ∩ {M �= 0} ⊂ {M �= 0} � A14, where

l_1=F;
l_2=2GLO-GO2+AO+HO-I;
l_3=L3O-IJL+2IN2-IK-EO;
l_4=4GJL2-8GLN2+4GN2O-GJO2+2AJL+2HJL+4GKL-2L3-4AN2-4HN2+AJO+HJO-2GKO-IJ+2AK

+2HK+2E;
l_5=GO4-8GIJL+16GIN2-4AL2O-4HL2O-2ALO2-2HLO2-AO3-HO3-8GIK+4IL2-8EGO+2ILO+IO2

Setting F = 0, we may assume X′
2 is defined by li = 0 (2 ≤ i ≤ 5) in A13. From

l2 = 0, l4 = 0, we eliminate I,E respectively. Then l3 = 0 and l5 = 0 holds identically. Thus

the affine part X′
2 is isomorphic to A11. Hence X2 is rational.

The generic fiber of ϕ over X2 is smooth. This is guaranteed by [9]. To make sure, we
can take a random point from X2, say P := (1, 0, 0, 0, 12, 0, 2, 1, 0, 1,−1, 1, 2, 1, 0) ∈ X2.

Then by a direct computation of the rank of the jacobian matrix, we find that ϕ−1(P ) is

smooth. Thus MN(6)8
6,1 is a non-empty Zariski open subset of X2, which shows that MN(6)8

6,1

is an irreducible rational variety of dimension 11.
(c) Suppose N = N(6)15. In this case, we cannot show that the ideal Js is

prime since the generators of Js are too complicated. Instead, we proceed as follows.
Let W := Proj C[A,B, . . . , P ] be the ambient weighted projective space of X :=
Proj C[A,B, . . . , P ]/Js, Js = 〈J1, . . . , J6〉 (see Appendix B for the explicit form of Ji ).
Since weight(O) = 1, by setting O = 1 in Ji , we get the inhomogeneous generators ji

(1 ≤ i ≤ 6) of the defining ideal js of X′ := X ∩ {O �= 0} in {O �= 0} � A15 :

j_1 = -G2N-2GMN-2GN3-IN-JK-KL-M2N-2MN3-N5;
j_2 = -DGK-DKN2-FK-G2K-G2P-2GKN2-2GMP-2GN2P-IP-K2N-KN4-KNP-M2P-2MN2P-N4P;
j_3 = -AK+DKN+G2M-G2N2+2GKN+2GM2-2GN4+IM-IN2+KMN+KN3+M3+M2N2-MN4-N6;
j_4 = -AN+DN2+2GN2-JM+JN2-LM+LN2+MN2+N4;
j_5 = DGN+DN3+FN+G^2N+2GN3-JP+KN2-LP+N5+N2P;
j_6 = -AP-DGM-DMN2+DNP-FM-G2M-2GMN2+2GNP+JNP-KMN+LNP-MN4+N3P.
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From j1 = 0, j4 = 0, j5 = 0, we eliminate I,A, F respectively (note that we need
the variable N in the denominator). Then the remaining three equations hold identically.

Thus X′ is isomorphic to A12 if restricted to the open subset {N �= 0} ⊂ A15. Set X′′ :=
X′ ∩ {N �= 0} ⊂ Spec C[A,B, . . . , P, 1/N] (O omitted). Let X′′ be the closure of X′′ in

A15. Then X′′ is defined by the saturation ideal ks := (js : N∞) of the ideal js with respect
to N . Using the weighted degree reverse lex order (A,B, . . . , P ) (O omitted) with weights
(9, 4, 2, 7, 8, 13, 6, 3, 12, 5, 9, 5, 6, 2, 10), we can calculate the saturation ideal ks by using
“sat(js,N)" command of the SINGULAR library elim.lib. Then we get ks = js. Thus we

have X′′ = X′.
Next we show the projective closure X′ of X′ in W is equal to X. Indeed, the defining

equations of X′ in W can be obtained as the homogenization of the Groebner basis of the
ideal js with respect to a degree monomial order ([4; 8.4 Th. 4]). Now with respect to the
same weighted degree reverse lex order as above, the generators j1, . . . , j6 happen to be the
Groebner basis of js (this is not always the case). The homogenization of j1, . . . , j6 are equal

to J1, . . . , J6. Thus we find X′ = X. Hence X is an irreducible rational variety (if we give
the reduced structure).

The existence of a smooth fiber of ϕ is guaranteed by [9]. Or if we take a point
R := (1,−1, 1,−1,−1, 10, 1,−1, 1, 1,−1, 1,−1, 1,−1, 1) ∈ X, then we can check the

fiber ϕ−1(P ) is smooth by calculating the rank of the jacobian matrix. Thus MN(6)15
6,1 is a

non-empty Zariski open subset of X, which shows that MN(6)15
6,1 is an irreducible rational

variety of dimension 12.
The same argument works for N = N(6)6, N(6)13. In these 3 cases, we do not know if

Js is prime (Js may have an embedded component). We just showed that MN
g,1 with reduced

structure is an irreducible rational variety. �

We discuss some corollaries which are deduced from Theorem 3.1 and also give several
remarks.

Let Mg,1 be the moduli space of pointed algebraic curves of genus g and N be the
semigroup of ordinary points, namely N = 〈g +1, g +2, . . . , 2g +1〉 = {0, g +1, g +2, . . . }.
Then Mg,1 is an irreducible variety of dimension 3g − 2 and MN

g,1 is a dense subscheme of

Mg,1 ([13; (14.11)(5)]). Thus the rationality of MN
g,1 is equivalent to that of Mg,1. From

Theorem 3.1, we have:

COROLLARY 3.3. Mg,1 is rational for 1 ≤ g ≤ 3.

REMARK 3.4. In [3], the rationality of M4,1 is proved in a geometrical way. So the
next question is if M5,1 is rational or not.

In the range 1 ≤ g ≤ 5, we have:

COROLLARY 3.5. MN
g,1 is an irreducible rational variety for any semigroup of genus

1 ≤ g ≤ 5 except N(5)8 and N(5)12.
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REMARK 3.6. In the case of N = N(6)8, we observed that the negative base space
S− of the miniversal deformation of the monomial curve CN consists of 2 irreducible compo-
nents. On one component, CN is (negatively) smoothable and on the other component, it is
not. Up to genus 6, this is the only semigroup whose negative base space is reducible as far
as we can calculate.

REMARK 3.7. Our main ingredient of the proof of Theorem 3.1 is the computation of
the obstruction ideal Js by means of SINGULAR. The computation of Js for a semigroup N

with 5 (or more) generators seems far beyond the reach of our computational ability.
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Appendix A

In this appendix, we summarize the information of MN
g,1 obtained so far for any nu-

merical semigroup N of genus 1 ≤ g ≤ 6 in the following 2 tables. In the notation
N = N(g)i = 〈a1, . . . , an〉, g is the genus, i is the ID number and {a1, . . . , an} are the

generators of N as semigroup. We set MN
g,1 := S−/C× = Proj C[A,B, . . . ]/Js.

TABLE 1. dimension, structure, irreducibility and rationality of MN
g,1 for 1 ≤ g ≤ 5

semigroup = 〈generators〉 dimMN
g,1 structure of MN

g,1 irreducibility rationality

N(1)1 = 〈2, 3〉 1 P1
(4,6)

© ©
N(2)1 = 〈2, 5〉 3 P3

(4,6,8,10)
© ©

N(2)2 = 〈3, 4, 5〉 4 P4
(5,2,3,6,4)

© ©
N(3)1 = 〈2, 7〉 5 P5

(4,6,8,10,12,14)
© ©

N(3)2 = 〈3, 5, 7〉 6 P6
(7,1,4,3,6,9,5)

© ©
N(3)3 = 〈3, 4〉 5 P5

(2,5,8,6,9,12)
© ©

N(3)4 = 〈4, 5, 6, 7〉 7 Proj C[A, . . . , K]/Js © ©
N(4)1 = 〈2, 9〉 7 P7

(4,6,8,10,12,14,16,18)
© ©

N(4)2 = 〈3, 7, 8〉 8 P8
(4,7,3,6,9,2,5,8,6)

© ©
N(4)3 = 〈3, 5〉 7 P7

(1,4,7,10,6,9,12,15)
© ©

N(4)4 = 〈4, 6, 7, 9〉 9 Proj C[A, . . . , M]/Js © ©
N(4)5 = 〈4, 5, 7〉 8 P8

(3,1,5,2,6,10,4,8,7)
© ©

N(4)6 = 〈4, 5, 6〉 7 P7
(10,2,6,3,7,4,8,12)

© ©
N(4)7 = 〈5, 6, 7, 8, 9〉 10 ? © ©
N(5)1 = 〈2, 11〉 9 P9

(4,6,8,10,12,14,16,18,20,22)
© ©

N(5)2 = 〈3, 8, 10〉 10 P10
(5,8,3,6,9,12,1,4,7,10,6)

© ©
N(5)3 = 〈3, 7, 11〉 9 P9

(11,2,5,8,3,6,9,12,15,7)
© ©

N(5)4 = 〈4, 7, 9, 10〉 11 Proj C[A, . . . , O]/Js © ©
N(5)5 = 〈4, 6, 9, 11〉 10 Proj C[A, . . . , N ]/Js © ©
N(5)6 = 〈4, 6, 7〉 9 P9

(4,8,2,6,10,14,1,5,8,12)
© ©

N(5)7 = 〈4, 5, 11〉 9 P9
(6,11,2,3,7,4,8,12,5,10)

© ©
N(5)8 = 〈5, 7, 8, 9, 11〉 12 ? ? ?

N(5)9 = 〈5, 6, 8, 9〉 11 Proj C[A, . . . , O]/Js © ©
N(5)10 = 〈5, 6, 7, 9〉 10 P10

(2,3,4,9,7,1,8,6,5,5,3)
© ©

N(5)11 = 〈5, 6, 7, 8〉 9 P9
(8,7,2,3,4,5,10,6,9,4)

© ©
N(5)12 = 〈6, 7, 8, 9, 10, 11〉 13 ? © ?
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TABLE 2. dimension, structure, irreducibility and rationality of MN
g,1 for g = 6

semigroup= 〈generators〉 dimMN
g,1 structure of MN

g,1 irreducibility rationality

N(6)1 = 〈2, 13〉 11 P11
(4,6,8,10,12,14,16,18,20,22,24,26)

© ©
N(6)2 = 〈3, 10, 11〉 12 P12

(4,7,10,2,5,8,11,3,6,9,12,6,9)
© ©

N(6)3 = 〈3, 8, 13〉 11 P11
(13,8,1,4,7,10,6,9,12,15,18,3)

© ©
N(6)4 = 〈3, 7〉 10 P10

(2,5,8,11,14,6,9,12,15,18,21)
© ©

N(6)5 = 〈4, 9, 10, 11〉 ? ? ? ?

N(6)6 = 〈4, 7, 10, 13〉 12 Proj C[A, . . . , P ]/Js © ©
N(6)7 = 〈4, 7, 9〉 11 P11

(4,8,12,1,5,3,7,2,6,10,14,9)
© ©

N(6)8 = 〈4, 6, 11, 13〉 11 Proj C[A, . . . ,O]/p2 © ©
N(6)9 = 〈4, 6, 9〉 10 P10

(3,2,6,8,12,4,8,12,10,14,18)
© ©

N(6)10 = 〈4, 5〉 10 P10
(2,6,10,3,7,11,15,8,12,16,20)

© ©
N(6)11 = 〈5, 8, 9, 11, 12〉 ? ? ? ?

N(6)12 = 〈5, 7, 9, 11, 13〉 ? ? ? ?

N(6)13 = 〈5, 7, 8, 11〉 12 Proj C[A, . . . , P ]/Js © ©
N(6)14 = 〈5, 7, 8, 9〉 11 P11

(6,8,7,9,1,10,2,3,4,6,11,5)
© ©

N(6)15 = 〈5, 6, 9, 13〉 12 Proj C[A, . . . , P ]/Js © ©
N(6)16 = 〈5, 6, 8〉 11 P11

(2,4,5,10,4,7,12,3,8,10,1,6)
© ©

N(6)17 = 〈5, 6, 7〉 11 P10
(14,3,8,4,9,10,15,6,2,7,5)

© ©
N(6)18 = 〈6, 8, 9, 10, 11, 13〉 ? ? ? ?

N(6)19 = 〈6, 7, 9, 10, 11〉 ? ? ? ?

N(6)20 = 〈6, 7, 8, 10, 11〉 ? ? ? ?

N(6)21 = 〈6, 7, 8, 9, 11〉 ? ? ? ?

N(6)22 = 〈6, 7, 8, 9, 10〉 ? ? ? ?

N(6)23 = 〈7, 8, 9, 10, 11, 12, 13〉 16 ? © ?

Appendix B

We list the generators of the defining ideal Js of S− for the semigroup N with 4 genera-

tors and T 2(CN) �= {0} in the range 1 ≤ g ≤ 6 (except N = N(6)5). A monomial AaBb . . .

is written as AaBb . . . .

• MN(3)4
3,1 := Proj C[A,B, . . . ,K]/Js, where C[A,B, . . . ,K] is a weighted graded polynomial ring of 11

variables with weights (7, 5, 6, 2, 3, 8, 6, 4, 5, 3, 4) and Js = 〈J1, . . . , J6〉 is a homogeneous prime ideal generated
by

J_1=-AC-FI-2H2I+AEJ+CHJ+HIK-CJK-EHJ2+DIJ2+EJ2K;
J_2=BC-CI+GI+FJ-AK+CDJ-BEJ+2H2J-IJ2+DIK-JK2-DEJ2-DJ3;
J_3=-BI+I2+AJ-DIJ-HJ2+J2K;
J_4=GI-AK-EIJ-IJ2+DIK+HJK-JK2;
J_5=GJ-BK+IK-EJ2-J3;
J_6=CG+FK-CEJ-CJ2+CDK-BEK+2H2K+EIK-HK2-DEJK-DJ2K;



158 TETSUO NAKANO

• MN(4)4
4,1 := Proj C[A,B, . . . ,M]/Js, where C[A,B, . . . ,M] is a weighted graded polynomial ring of

13 variables with weights (5, 7, 3, 6, 4, 6, 5, 1, 2, 8, 8, 4, 10) and Js = 〈J1, . . . , J6〉 is a homogeneous prime ideal
generated by

J_1=-BJ-GM+3EFG+BFI-FHJ-CJL+CIM-3CEFI+F2HI+CFIL;
J_2=-BC-AG-CFH+ACI-C2L;
J_3=-BD+GK-DFH-CIK-CDL;
J_4=-AD-CK;
J_5=-AJ+CM-3CEF+AFI;
J_6=-JK-DM+3DEF+FIK;

• MN(5)4
5,1 := Proj C[A,B, . . . ,O]/Js, where C[A,B, . . . ,O] is a weighted graded polynomial ring of 15

variables with weights (1, 3, 6, 10, 7, 2, 5, 9, 7, 4, 8, 6, 4, 5, 8) and Js = 〈J1, . . . , J6〉 is a homogeneous prime ideal
generated by

J_1=-IK+HL+IO+FIL+BL2-IM2;
J_2=EL-IL+KN-NO+AJK-FLN+M2N-AJO-AFJL+AJM2;
J_3=-EI+I2-HN-AHJ-BLN-ABJL;
J_4=DN+EO-IO+ADJ-BEN+2BIN+CMN-ABEJ+2ABIJ+ACJM;
J_5=-DL+KO-O2-BIL-CLM-BKN-FLO+M2O+BNO-ABJK+BFLN

-BM2N+ABJO+ABFJL-ABJM2;
J_6=DI-HO+BI2+CIM+BHN-BLO+ABHJ+B2LN+AB2JL;

• MN(5)5
5,1 := Proj C[A, B, . . . , N ]/Js, where C[A,B, . . . , N ] is a weighted graded polynomial ring of 14

variables with weights (4, 8, 4, 8, 2, 6, 10, 14, 6, 9, 12, 3, 1, 7) and Js = 〈J1, . . . , J6〉 is a homogeneous prime ideal
generated by

J_1=-BJ+HL;
J_2=HI+BK;
J_3=HM-BN;
J_4=-IJ-KL-HM+BN;
J_5=KM+IN;
J_6=-JM+LN;

• MN(5)9
5,1 := Proj C[A,B, . . . ,O]/J5, where C[A, B, . . . ,O] is a weighted graded polynomial ring of 15

variables with weights (3, 9, 1, 2, 4, 10, 4, 5, 6, 5, 6, 7, 7, 2, 8) and Js = 〈J1, . . . , J6〉 is a homogeneous prime ideal
generated by

J_1=-2HI+IJ-GL;
J_2=-2BH+BJ+LM+2AHK-AJK;
J_3=-BG-IM+AGK;
J_4=-2FH+FJ-LO-2H3+3H2J-3HJ2+J3+2EHK-EJK+G2L+2CGH2

-2CGHJ+1/2CGJ2-2CDHM+CDJM -1/2C2G2H+1/4C2G2J;
J_5=-FG+IO-GH2-G2I+GHJ-GJ2+EGK+CG2H-1/2CG2J-CDGM

-1/4C2G3;
J_6=FM+BO+H2M+GIM-HJM+J2M-EKM-AKO-CGHM+1/2CGJM

+CDM2+1/4C2G2M;

• MN(6)6
6,1 := Proj C[A,B, . . . ,K]/Js, where C[A,B, . . . ,K] is a weighted graded polynomial ring of 11

variables with weights (7, 5, 6, 2, 3, 8, 6, 4, 5, 3, 4) and Js = 〈J1, . . . , J6〉 is a homogeneous ideal. The equations
J1, . . . , J6 are too lengthy to write down here so that we omit them (for instance J1 consists of 228 terms).

• MN(6)8
6,1 := Proj C[A,B, . . . ,O]/Js, where C[A,B, . . . ,O] is a weighted graded polynomial ring of 15

variables with weights (11, 8, 12, 14, 18, 9, 4, 10, 16, 2, 8, 6, 1, 4, 6) and Js = 〈J1, . . . , J6〉 is a homogeneous non-
prime ideal generated by

J_1=AK+EM+AJL+HKM-2AN2+HJLM+2GKLM-L3M-2HMN2-GKMO+2GJL2M-4GLMN2-GJLMO+2GMN2O
J_2=IK+EO+IJL-2IN2-L3O
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J_3=-FK-FJL+2FN2
J_4=FM
J_5=IM-AO-HMO-2GLMO+GMO2
J_6=FO

Js = p1 ∩ p2, where pi is a homogeneous prime ideal. p1 = 〈O,M, JL − 2N2 + K〉 and p2 = 〈k1, . . . , k5〉
with

k_1=F,
k_2=2GLMO-GMO2+HMO-IM+AO,
k_3=L3O-IJL+2IN2-IK-EO,
k_4=4GJL2M-8GLMN2+4GMN2O-GJMO2+2HJLM+4GKLM-2L3M-4HMN2+HJMO-2GKMO+2AJL-IJM

+2HKM-4AN2+AJO+2AK+2EM,
k_5=GMO4-8GIJLM+16GIMN2-4HL2MO-2HLMO2-HMO3-8GIKM+4IL2M-4AL2O

-8EGMO+2ILMO-2ALO2+IMO2-AO3

• MN(6)13
6,1 := Proj C[A, B, . . . , P ]/Js, where C[A,B, . . . , P ] is a weighted graded polynomial ring of 16

variables with weights (11, 3, 1, 6, 2, 7, 4, 9, 14, 5, 10, 8, 8, 4, 2, 5) and Js = 〈J1, . . . , J6〉 is a homogeneous ideal
generated by

J_1=KM-IN-BHNO-FJNO+FNOP-J2NO2+2JNO2P-NO2P2-B2GNO2-BEJNO2+BJNO3+BENO2P-BNO3P
J_2=-AM-IP+EMNP-BHOP-FJOP-MNOP+FOP2-J2O2P+2JO2P2-O2P3-CEMNO2+CMNO3-B2GO2P

-BEJO2P+BJO3P+BEO2P2-BO3P2
J_3=AN+KP-EN2P+N2OP+CEN2O2-CN2O3
J_4=-LN-MN+KO+BNP-EN2O+N2O2
J_5=-LM-M2+IO+BMP-EMNO+BHO2+FJO2+MNO2-FO2P+J2O3-2JO3P+O3P2+B2GO3+BEJO3-BJO4

-BEO3P+BO4P
J_6=-AO-LP-MP+BP2-CENO3+CNO4

• MN(6)15
6,1 := Proj C[A, B, . . . , P ]/Js, where C[A,B, . . . , P ] is a weighted graded polynomial ring of 16

variables with weights (9, 4, 2, 7, 8, 13, 6, 3, 12, 5, 9, 5, 6, 2, 1, 10) and Js = 〈J1, . . . , J6〉 is a homogeneous ideal
generated by

J_1=-JK-KL-IN-G2N-2GMN-M2N-2GN3O2-2MN3O2-N5O4
J_2=-FK-IP-DGK-G2P-2GMP-M2P-G2KO-KNOP-K2NO2-DKN2O2-2GN2O2P-2MN2O2P-2GKN2O3

-N4O4P-KN4O5
J_3=-AK+IM+G2M+2GM2+M3+DKN+2GKNO+KMNO-IN2O2-G2N2O2+M2N2O2+KN3O3-2GN4O4-MN4O4

-N6O6
J_4=-JM-LM-AN+DN2+2GN2O+MN2O+JN2O2+LN2O2+N4O3
J_5=FN-JP-LP+DGN+G2NO+N2OP+KN2O2+DN3O2+2GN3O3+N5O5
J_6=-FM-AP-DGM+DNP-G2MO+2GNOP-KMNO2+JNO2P+LNO2P-DMN2O2-2GMN2O3+N3O3P-MN4O5
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