Pacific Journal of Mathematics

Generalized character semigroups: The Schwarz decomposition.

Y.-F. Lin

Article information

Source
Pacific J. Math., Volume 15, Number 4 (1965), 1307-1312.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102995283

Mathematical Reviews number (MathSciNet)
MR0188317

Zentralblatt MATH identifier
0163.02302

Subjects
Primary: 20.90

Citation

Lin, Y.-F. Generalized character semigroups: The Schwarz decomposition. Pacific J. Math. 15 (1965), no. 4, 1307--1312. https://projecteuclid.org/euclid.pjm/1102995283


Export citation

References

  • [1] A. H. Clifford, Semigroups admitting relative inverses, Annals of Math. 42 (1941), 1037-1049.
  • [2] H. Cohen, H. S. Collins, Affine semigroups, Trans. Amer. Math. Soc. 93 (1959), -97-113.
  • [3] M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Mon. Vol. 65 (1958), 506-514.
  • [4] E. Hewitt, and H. S. Zuckerman, Finite dimensional convolution algebras, Acta Math. 93 (1955), 67-119.
  • [5] G. Losey, and H. Schneider, Group membership in ring and semigroups, Pacific J. Math. 11 (1961), 1089-1098.
  • [6] W. D. Munn, Pseudo-inverses in semigroups, Proc. Cambr. Phil. Soc. 57 (1961),. 247-250.
  • [7] L. S. Prontrjagin, Topological groups, Princeton (1939).
  • [8] D. Rees, On semi-groups, Proc. Cambr. Phil. Soc. 36 (1940), 387-400.
  • [9] S. Schwarz, The theory of characters of finite commutative semigroups, Czech. Math. J. 4 (79), (1954), 219-247.
  • [10] S. Schwarz, The theory of characters of commutative Hausdorff bicompact semigroups,, Czech. Math. 6 (81), (1956), 330-361.
  • [11] A. D. Wallace, The structure of topological semigroups, Bull. Amer. Math., 61 (1955), 95-112.
  • [12] A. D. Wallace, Relation-Theory (Lecture Notes), University of Florida, (1963-1964).
  • [13] L. E. Ward, Jr. Partially ordered topological spaces, Proc. Amer. Math. Soc. & (1954), 141-161. ACADEMIA SLNICA, FORMOSA