GENERALIZED CHARACTER SEMIGROUPS: THE SCHWARZ DECOMPOSITION

Y.-F. LIN

The author's résumé: A structure theorem due to \check{S} . Schwarz asserts that if S is a finite abelian or a compact abelian semigroup admitting relative inverses, than the character semigroup of S is decomposed into a disjoint union of character groups of certain maximal subgroups of S. In this note, among other things, we generalize this Schwarz Decomposition Theorem to a broader class of semigroups, the so-called pseudo-invertible semigroups. We also relax the range of the characters from the semigroup of complex numbers to a more general semigroup.

For notations and terms not defined here see A. D. Wallace [11]. Throughout this paper, let S be always a compact commutative semigroup, unless otherwise stated. By a character of S is meant a continuous homomorphism of S into the multiplicative semigroup C of the complex numbers endowed with the usual Euclidean topology. The collection of all characters of S, with the value-wise multiplication of functions, endowed with the compact-open topology, forms a semigroup which will be denoted by $(S, C)^{\uparrow}$ or simply S^{\uparrow} , and will be called the character semigroup of S. Hewitt and Zuckerman [4] use the term semicharacter, in the discrete case, for not identically zero characters. Here we use (\hat{S}, C) or simply \hat{S} , as distinguished from S^{\uparrow} , to denote the collection of semicharacters of S. We note that \hat{S} , in general, need not be a semigroup. We first draw attention to the fact that if χ is a character of S, then $|\chi(x)| \leq 1$ for every x in S. For, otherwise $\chi(S)$ would not be compact. Thus, in the study of characters, only the unit disc $\{z: |z| \leq 1\}$ of the complex numbers is used. Let us write D for this unit disc. The set D itself forms an important semigroup which is compact, connected, commutative, cancellable,¹ has zero 0 and unit 1; moreover the circumference $\{z: |z| = 1\}$ of D is the maximal subgroup H(1) and $D \setminus H(1)$ is an ideal. However, only some of these are needed as we shall see below.

Throughout the rest of this paper, let T be an arbitrary, but fixed, compact commutative cancellable semigroup with zero z and unit u^2 such that $T \setminus H(u)$ is a subsemigroup of T. By a generalized character

¹ A semigroup S is cancellable if and only if for any nonzero elements a, b, c in S such that ab = ac or ba = ca, then b = c.

² It is to be understood that $z \neq u$.

Received August 27, 1964.