Pacific Journal of Mathematics

A special deformation of the metric with no negative sectional curvature of a Riemannian space.

Grigorios Tsagas

Article information

Source
Pacific J. Math., Volume 29, Number 3 (1969), 715-725.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102982806

Mathematical Reviews number (MathSciNet)
MR0244895

Zentralblatt MATH identifier
0181.24502

Subjects
Primary: 53.70

Citation

Tsagas, Grigorios. A special deformation of the metric with no negative sectional curvature of a Riemannian space. Pacific J. Math. 29 (1969), no. 3, 715--725. https://projecteuclid.org/euclid.pjm/1102982806


Export citation

References

  • [1] M. Berger, Varietes riemanniennes courbure positite, Colloque intern. C. N. R. S. Bui. Soc. Math., France 87 (1959), 285-292.
  • [2] M. Berger, Trois remarques sur varietes riemannienesa courbure positive C. R. AcacL Sci. Paris 263 (1966), 76-78.
  • [3] B. Bishop and R. Crittenden, Geometry of manifolds,Academic Press, New York, 1964.
  • [4] S. Chern, The geometry of G-structures, Bull. Amer. Math. Soc. 72 (1966), 167-219.
  • [5] L. Eisenhart, Riemanniangeometry, Princeton University Press, 1949.
  • [6] T. Frankel, Manifolds with positive curvature, Pacific J. Math. 11 (1961), 165-174.
  • [7] H. Guggenheimer, Differential geometry, McGraw-Hill Book Company, 1963.
  • [8] S. Helgason, Differential geometry and symmetricspaces, Academic Press, New York, 1962.
  • [9] N. Hicks, Notes on differentialgeometry, Math. Studies, No. 3, Van Nostrand^ New York, 1965.
  • [10] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. 1, Inter- science, New York, 1963.
  • [11] J. Milnor, Morse theory, Annals of Math. Studies, No. 51, Princeton University Press, 1963.
  • [12] S. Myers, Riemannian manifolds with positive mean curvature, Duke Math. J. 8 (1941), 401-404.
  • [13] S. Sternberg, Lectures on differentialgeometry, Prentice-Hall, Englewood Cliffs, N. J., 1964.
  • [14] G. Tsagas, A Riemannianspace with strictly positive sectional curvature, Pacific J. Math. 25
  • [15] Y. Tsukamoto, On Riemannian manifolds with positive curvature, Mem. Fac. Sci, Kyushu University 15 (1961), 90-96.
  • [16] J. Wolf, Spaces of constant curvature, McGraw-Hill series in higher mathematics, 1967.
  • [17] K. Yano, Differentialgeometry on complex and almost complex spaces, Pergamon Press, New York, 1965.
  • [18] K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Math. Studies, No. 32, Princeton University Press, 1953.