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A SPECIAL DEFORMATION OF THE METRIC WITH
NO NEGATIVE SECTIONAL CURVATURE
OF A RIEMANNIAN SPACE

GRIGORIOS TSAGAS

The main results of this paper can be stated as follows,
Let M;, M; be two big open submanifolds of the Riemannian
manifolds (R, k) and (RZ, h.), respectively. The submanifolds
M,M, with the metrics h;/M; and h./M,, respectively, have
positive constant sectional curvature. We have constructed
a special I-parameter family of Riemannian metrics d(f) on
M, X M, which is the deformation of the product metric
hy/M, X hs/M; and it has strictly positive sectional curvature,
In other words, we have proved that v Pe M, X M; the derivative
of the sectional curvature with respect to the parameter ¢ for
t =0 and for any plane which is spanned by Xe (M;), and
Y e (M,), is strictly positive,.

Let S® be a two-dimensional sphere with the canonical metric ¢
whose sectional curvature is positive constant. Consider the product
of two manifolds S* x S®. It is not known, ([1], p. 287), (4], p, 171),
([11], p. 106), if there exists a deformation of the metric g X g with
strictly positive sectional curvature.

Let R® be a two-dimensional Euclidean space with the metric A
induced from the canonical metric g of S It is obvious that the
Riemannian manifold R? with the metric % has constant sectional curva-
ture. Consider two such Riemannian manifolds (R:, ,), (R, h;). The
space R? x R: with the metric h, X h, has no negative sectional curva-
ture. I do not know if there is a deformation of the metric h, X A,
whose sectional curvature is strictly positive.

1. Let R? be a Euclidean plane which is referred to a coordinate
system (u,, ;) on which we obtain a metric defined by

by = {hy = 1, hyy = hyy =0, hyy, = sin’u,}

whose sectional curvature is positive constant 1.
Consider an open Riemannian submanifold M, of the Riemannian
manifold (R:, h,) defined by

Mlz{(ul, uz)eR%:0<ul<%,—oo <u2<oo},

whose metric is h,/M,.
Let R? be also another Euclidean plane referred to a coordinate
system (u,, #,) on which we take a metric defined by
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hy = {hss =1, hyy = hyy = 0, by, = sin®* ug} .

We also consider an open Riemannian submanifold M, of R? de-
fined by

Mz={(u3,u4>eR2:0<u3<%,—oo<u4<oo},

whose metric is h,/M,.
Let M, x M, be the product manifold of M,, M, which is defined by

M, x M, = {(0, vy sy w) € B X RE:0 < < T,

—°°<uz<°°,0<us<—g',—°°<u4<°°}°

On the manifold M, x M, we get a special 1-parameter family of
Riemannian metrics defined by

du =1+ tfu dzz = sin’ u1(1+tf2) ’

(L1) d@) = {
d =1+ tp,, dy = sin® uy(L+tp,), d;; = 0,if i =5 ,

where

Ji = [y, w,), fo = fo(ts, W), @, = (U, Up), P2 = Pothy, Uy), — € < E < €,
¢ is a small positive number.
It is obvious that d(0) = h,/M, X h,/M,.

2. Let P be any point of M, x M,. As is known, the sectional
curvature of a plane spanned two vectors X, Y of the tangent space
(M, x M,), is given by

RX, V)X, Y
| X[ Y [P—<X, Y )*

If we apply Taylor’s expansion theorem for the function ¢(X, Y)(t),
we get

o(X, Y)(t)=—

o(X, Y)(t) = o(X, Y)(0) + 0i(X, Y)(0) % + (X, Y)(0) 2t_' Feen,

From the above formula we conclude that the sign of o(X, Y)(¢)
depends on the sign of o(X, Y)(0), if ¢ is a small positive number and
o(X, Y)(0) # 0, butif 0(X, Y) = 0, then its sign depends on ta}(X, Y )(0).

As is known ([1], p. 287), o(X, Y)0) =0, if Xe(M), and
Y e (M,),. In this case we estimate o(X, Y)(¢) which is given by the
formula
_AQ

(2.1) o(X, Y)(t) = B0’
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where

At) =<LR(X, V)X, YD = Ry X)(Y )+ Ry X)A(Y ¥
+ Buan( XYY + Ruad XY + 2R X' XH(Y)?
+ 2R (XY PY " + 2Ry (XYY + 2R, X' XX(YH)
+ 2(Rys + Rip) X' X2Y?Y* .

(2.2)

(2.3) B(t) = {d(X")* + dao X*)Hdso( Y°)* + du(Y?)} > 0,
because, in this case, (X, Y> = 0.

From relation (2.1), we obtain

o(X, Y)(0) = — %% =0,

or
(2.4) A0)=0.

If we differentiate the same relation (2.1) with respect to ¢, we
obtain

oUX, Y)0) = — LOBO ;6?(0)3'(0) ,

which, by virtue of (2.4), takes the form

2.5) oUX, Y)(0)=— %% .

From the formula (2.2), we obtain
A'(0) = Rlus(0)(X7)(Y?) + Rises(0)(X*)(Y?) + R (0)(X ) (YH)
+ Ripl O)(X*)(YF)* + 2Rin(0) X" X*(Y?)* + 2R, (0)(X')*Y* Y™
+ 2R (O)(X*)Y°Y* + 2R1,.(0) X" X*( YY)
+ 2{R{:(0) + Riop(0)} X' XYY",

(2.6)

We shall estimate the coefficients of the Riemannian tensor which
appear in the formula (2.6). As is known, R;;,, is given by ([18], p. 18)

R..., = .}.{ 0'dy, + a2djl — azdjk _ 0°dy }
T2 Vouou,  ouduw,  owdw,  owou,
2.7

- drs{rgk]—':l - F;‘lrfk} )

where I'7,, I's, I'5, I'y, are the Christoffel symbols of second kind.
From (1.1) and (2.7), if we make the calculations, we obtain
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_t(?f A £ [@fi/ous)* | (0p,/ou,)
_R1 - - L 1
w 2<6u3 auf) {1+z:f1 +1+t¢l}’
_t (0, lige) sin 2u,(0f,/0u,)
R = — 2 1 3
=g (a S TS + 1) )
_¢ {(aﬁ/8u4)2 o Si’uy0py/0u)’  sin 2u,(0f/0us)p, }
1+ tfy 1+ tfy 1+ tp, ’

fy , 0%, | sin 2u,(dp,/0u,)
b ouz + ouy? + 21 + tf)) )

_t {Sinzul(afz/aus)2 1 (0p,/0u,)* _ sin 2u1f2(5¢1/5m)}
4 1+ if, 1+ tp, 1+ tf, ,

Rop = t (sinzul *f, + sin, ’p, n sin 2u, sin® u,(0p,/0u,)

2 ou; ous 21 + ¢f)

2.8 n sin 2u, sin®u,(0f,/0u,) _ &* {sin2 U, (0f/0u,)
(2.8) 21+ t,) 4 1+ tf
L Sin® Us(0,/0u;)®  sin 2u, sin® u, fo(0p./0u,)
1+ tp, 1+tf,
__ sin 2u, Sin® U, (0, leaua)}
1+ tp,

( Pp. ., cosu, 3(7)1) B (0 fou)0p,ou,)

0u,0u, sinu, 0u, 4 1+ to, ’

( Of, g COS U 3f1>__ 1 (9f,/0us)(0f:/0u,)
ou0u, sinu, ou, 4 1+ tf, ’

- < 0°f,  €OS U, 3f2>

0U,0U, sinu, ou,

_ ¢ sin’y (aﬂ/au3)(6f2/au4)
4 1 + tf,

’p,  COS U, 8g02>
0u,0u, sinu, O0u,

R1424 = ";“ sin® Us (

_ ﬁ Sin® 4;(0p,/0w,)(0p,/0U,)
4 1+ to, )

(2-10) R1324 = R1423 =0.

If we choose the functions @, fi, f,, @. such that they satisfy
the partial differential equations
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’p, 9 COS %, op, _ 0

- ,

O, 0U, sinu, ou,
rf, 9. COS U, of: —0
oU0U, sinu, ou, ’

(2.11) &*f, _ cosu; Of,

00U, sinw; ou,

O p, _ cosu, Op, _ 0
ow,0u,  sinw, 0u, ’

then the formulas (2.9) take the form
B £ (0p,/u.)(0p,/0n,)
1323 -

4 1+ tp,
R, = _ & (9fi/ows)(0f [ow,) ,
4 1+ tf
& R, = _ B sin’ ul(afz/aus)(afz/au4)
4 1+ tf,
Ry = — L S0 %(00:/0U,) (9 5)
4 1+ tp,

From the relations (2.8) and (2.12) we obtain

R0 = (2L + 22,

ou* o,

2 .
RL(0) = ( gf + sin?u, g;’ + Sm22”3 55 1 ) ,
3

, _ 0°p, . 0%f, sin 2u, Jdp
(2.13) Rzaza(o) —§<'5”‘2“ + SIHZ ul auz + 2 L aull> ]

sin 2u, sin® u, Op,

R..(0) = (sm Uy L2 9f | gipe Us 5% +

ou? 0, 2 ou,
4 sin 2u, sin® w, of, >
2 ou,/
(2-14) Rfszs(o) = R;m(o) = R;m(o) = RJ,424(O) =0.
The first partial differential equation of (2.11) can be written
Fp, 0 0P, —0
ou,0U,  0Ou, Uy '
or
Fpfoudu, _ 9 log sin® %, ,
O, [0, o,
or

0 _ Z(u,) sin® u, ,
0,
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whose general solution is
(2.15) P = Vi(u,) sin®w, + T\(u,) ,

where V. (u,) and T,(u,) are arbitrary functions of u, and u,, respectively.

We can find the general solutions of the rest of partial differential
equations (2.11) in the same way. The general solutions of these
equations are

fi = sin® uh,(w,) + ﬂl(ua) ’
(2.16) @, = sinu, Vy(u,) + To(uy) ,
fo = sin Ushg(Uy) + )uz(us) ’

where N\ (w,), t(ws), Vi(u,), Ti(u,), Ny(%,), pt(u;) are arbitrary functions
of wu,, u;, U, u,, U, U, respectively.
The formulas (2.13) by virtue of (2.15) and (2.16) take the form

RL,.(0) = %{2 cos 2u, V(1) + T{’(ul)} + %{2 €08 2un(1,)

+ )}

Rl0) = %{sinz u(NP () + T () + 3"122“3 ()

sin 2u,

5 i(us) — sin® u, sin u, Vz(uz)} ,

+
(2.17)

Riu(0) = -;—{siw w(t tg) + Vi) + 51“22’“* Viits)

T (w,) — sin®u, sin u3x2(u4)} ,

sin 2u,
+ 2

Bl (0) = S8 fras) - cos wapr(u) + cos? uho(u)

. .,
-+ M;Ln&{ Vi'(u,) + cos w,To(u,) + cos®u, Vz(uz)} .

The relation (2.6) by means of (2.10) and (2.14) takes the form

A'(0) = Riya(0)(X)(Y?) + Riao(0)(X*)(Y?) + Rl (0)(X)*(Y?)*
+ R (0)(XP)(YF) .

In order that o'(X, Y)(0) = —A’(0)/B(0) be positive on the
Riemannian manifold M, x M,, it must be

(2.19) A'0) < 0.

(2.18)

From the formula (2.18) we conclude that (2.19) is valid when
we have
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Ris(0) <0, RL,(0) <0, R0 <0, R0 <0,
which, by virtue of (2.17), take the form
%{2 cos 2u, Vi(u,) + T7'(w)} + %{2 €08 2ush, () + f1'(us)} < 0,

st w0 ) + Tr) + T2 @) + 02 )

— sin® u, sin %, Vz(uz)} <0,

sin®2u,

SHsint ) + Vi) + S v, 1 2 i)

— sin® u, sin usxz(u4)} <0,

sin® u, sin 4,

5 {x;’(m) -+ €oS Uspty(u;) + cos’ uukz(u4)}

sin u, sin® u,

* 2

}V;’(uz) + cos u, T'y(u,) + cos® u, Vz(uz)} <0,

which must be valid on the Riemannian manifold M, x M,.
The above inequalities hold if we have

2cos 2u, V,(u,) + TV (uy) <0,

sin®*2u,

sin® w, (1) () + V() + Vi) + 81“22“1 T'(u,)

(2.20)
— sin® u, sin wh,(u,) < 0,

Ny () + €OS Uspty(Us) + €O8* Uy (u,) < 0,

2 cos 2un (w,) + ' (us) < 0,

sin® w, V() + T2 () + S22, ) 4 B2
(2.21) 2 2

— sin® u, sin u, V,(u,) < 0,

24 (%s)

Vi(u,) + cosu, Tyw,) + cos*u, V(u,) <O0.

The inequalities (2.21) are similar to the inequalities (2.20); for
this reason we shall only study the inequalities (2.20).

The factor cos 2u, changes sign when 0 < %, < 2/x; from this and
from the fact that V,(u,) and V!(u,) must have constant sign and
bounded when —oco < u, < oo, we conclude that V,(u,) must be a
constant negative number —a.

From the above remark, the inequalities (2.20) take the form
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— 2acos 2u, + Ti(u,) <0,

(2.22) sin®u, ) (u) — asm;Zul + Sm 22u1 T (w,) — sin’*u, sinuh(u,) <0,

N () + COS Uy ty(Us) + €OS® Uhy(u,) < 0 .

In order for the second and the third inequalities of (2.22) to be
valid, the function \,(u,) must be a positive constant number 5.
Therefore the above inequalities become

— 2acos 2u, + T (u,) <0,

- .
acsu; 2u, + sm22ul Ti(u,) — B sin®u, sinu, < 0 ,

1o(us) + Beosu, < 0.

(2.28) sin® u gt (u;) —

If the functions 7T',(u,), p.(w,) are chosen such that

Tiw) <0, max{T/w)} < —2a, 0<u < %

max{pi(u)} < — B, pu) <0, 0<u< g,

then the inequalities (2.23) hold.
We also conclude that if the functions \,(u,), Vi(u,), tt(us), T o(%,)

satisfy the conditions

7\'1(“4) = =7, Vz(uz) =0 ’

) < 0, max{g(u)} < —2v, 0<u< 12&,
max{Tyu)} < — 6, T¥w)<0, 0<u < —’;—,

then the inequalities (2.21) hold.
Therefore, if the functions ¢, fi, ., f: have the form

g)l:—asinzul-l-Tl(ux), a>0’
(2.24) fi= —vsintuy 4 ), 7 >0,
¢2=381nu1+Tz(u1)’ >0,
fo = Bsinu, + py(us) , 8>0,

such that the functions T(w,), g.(us), To(u,) and p,(us) satisfy the
conditions
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Tiw) <0, max{T/(w)}< —2a, 0<u <X,

2
max{ph(u)} < — B, ) <0, 0<u g

(2.25) .
lu{(us) < 0 ) maX{ﬂ;/(’lI/g)} < - 27 ’ O < u3 < ’2— )
max{Tiu)} < — &, T/(w)<0, 0<u < % ,

then o0,(X, Y)(0) > 0 for Xe(M),, Ye (M,)p.
Hence we have the following theorem.

THEOREM. Let M,, M, be two Riemamnian spaces with positive
constant sectional curvature defined in §1. If we consider a special
1-parameter family of Riemamnian metrics d(t) on M, x M, defined
by (1.1) where the functions fi, fs, @i, @, have the form (2.24) in which
the functions T.(u,), p.(us), To(w,) and p(us) must satisfy the conditions
(2.25), then Y Pe M, x M, the derivative of the sectional curvature
of any plane spanned by X e (M,), and Y € (M,), with respect to t for
t = 0 1s strictly positive.

From the above, we conclude that if the parameter ¢ is positive
and small enough, then the corresponding Riemannian metric d(t) de-
fined by (1.1) on M, x M, where the functions f,, f;, ,, . have the
form (2.24) in which the functions T'(u,), £t,(%s), To(u,) and g,(u;) must
satisfy the conditions (2.25), has strictly positive sectional curvature.

3. We can extend the manifold M, x M, to a manifold

N, X N,D M, x M,

such that there is a deformation of another product metric on N, x N,
which has strictly positive sectional curvature.

This method can be stated as follows. On the Euclidean plane
R; we obtain a metric which is given by

o U
wlz{wu:ly wm:wmzoy 6022:S1n2—771},

where n is an integer > 1. The sectional curvature of this metric is
1/n’.

Now, consider an open Riemannian submanifold N, of the
Riemannian manifold (R?, ,) defined by

N1={<u1,u2)eR%:0<u1<ng,— o < Uy < oo},
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whose metric is w,/N,.
Similarly, on the Euclidean plane R:Z, we obtain a metric which
is given by

o U
(02:{(1)33:1, Wy = Wy =0, w44:51n2i}y

whose sectional curvature is 1/n%
Let N, be an open Riemannian submanifold of the Riemannian
manifold (R, w,) which is defined by

NZ:{(ug,u4)eR§:0<u3<n%, —co < Uy < o0},

whose metric is w,/N;,.
We consider the product manifold N, x N, of N,, N, defined by

NIXNZZ{(’MI,’LLZ,ZL@%QGR% XR§:O<'M1<W%, — o0 Y, < oo,
T
0<u3<n3, — oo < Uy < oo},

It is obvious that (N, X N,)D(M, x M,) and with the same
technique as in §2 we can prove that there is a deformation of the
metric @,/N, X @,/ N, which has strictly positive sectional curvature
on the manifold N, x N,.

Acknowledgment is due to Professor S. Kobayashi for many helpful
suggestions.
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