Pacific Journal of Mathematics

Congruence lattices of semilattices.

Ralph Freese and J. B. Nation

Article information

Source
Pacific J. Math., Volume 49, Number 1 (1973), 51-58.

Dates
First available in Project Euclid: 13 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102945267

Mathematical Reviews number (MathSciNet)
MR0332590

Zentralblatt MATH identifier
0287.06002

Subjects
Primary: 06A20

Citation

Freese, Ralph; Nation, J. B. Congruence lattices of semilattices. Pacific J. Math. 49 (1973), no. 1, 51--58. https://projecteuclid.org/euclid.pjm/1102945267


Export citation

References

  • [1] K. A. Baker, Equational bases for finite algebras, Notices Amer. Math. Soc, 19 (1972), A-44.
  • [2] K. A. Baker, Primitive satisfactionand equational problems for lattices and other algebras, to appear.
  • [3] P. Crawley and R. P. Dilworth, Algebraic Theory of Lattices, Prentice-Hall, Engle- wood Cliffs, N. J., 1973.
  • [4] Alan Day, A characterization of modularity for congruence lattices of algebras, Canad. Math. Bull., 12 (1969), 167-173.
  • [5] R. A. Dean and R. H. Oehmke, Idempotent semigroups with distributive right con- gruence lattices, Pacific J. Math., 14 (1964), 1187-1209.
  • [6] Trevor Evans, The lattice of semigroup varieties, Semigroup Forum 2 (1971), 1-43.
  • [7] B. Jnsson, Algebras whose congruence lattices are distributive,Math. Scand., 21 (1967), 110-121.
  • [8] A. Malcev, On the general theory of algebraic systems, Mat. Sb. (N. S.), 35 (77) (1954), 3-20.
  • [9] D. Papert, Congruence relations in semi-lattices, London Math. Soc, 39 (1964), 723-729.
  • [10] E. T. Schmidt, KongruenzrelationenAlgebraischerStrukturen,Veb Deutscher Verlag, Berlin, 1969.