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CONGRUENCE LATTICES OF SEMILATTICES

RALPH FREESE AND J. B. NATION

The main result of this paper is that the class of con-
gruence lattices of semilattices satisfies no nontrivial lattice
identities. It is also shown that the class of subalgebra
lattices of semilattices satisfies no nontrivial lattice identities.
As a consequence it is shown that if 5^* is a semigroup variety
all of whose congruence lattices satisfy some fixed nontrivial
lattice identity, then all the members of 5^" are groups with
exponent dividing a fixed finite number.

Given a variety (equational class) J ^ of algebras, among the inter-
esting questions we can ask about the members of SίΓ is the following:
does there exist a lattice identity δ such that for each algebra A e S?~,
the congruence lattice Θ(A) satisfies S? In the case that 5ίΓ has dis-
tributive congruences, many strong conclusions can be drawn about
the algebras of J%Γ [1, 2, 7]. In the case that 3ίΓ has permutable con-
gruences or modular congruences, there is reason to hope that some
similar results may be obtainable [4, 8].

A standard method of proving that a class of lattices satisfies
no nontrivial lattice identities is to show that all partition lattices
(lattices of equivalence relations) are contained as sublattices. The
lattices of congruences of semilattices, however, are known to be
pseudo-complemented [9]. It follows that the partition lattice
on a three-element set (the five-element two-dimensional lattice)
is not isomorphic to a sublattice of the congruence lattice of a semi-
lattice, and in fact is not a homomorphic image of a sublattice of the
congruence lattice of a finite semilattice. Nonetheless we shall show
in this paper that the congruence lattices of semilattices satisfy no
nontrivial lattice identities. This solves Problem 6 of [10]. Using
a theorem of T. Evans [6], we also show that if ψ* is a variety of
semigroups all of whose congruence lattices satisfy some fixed non-
trivial lattice identity, then all the members of Y* are groups with
exponent dividing a fixed finite number.

In § 1 we give definitions and a few basic facts about the con-
gruences of semilattices. In § 2 we prove our main theorem, and in
§ 3 we apply it to obtain the corollary about varieties of semigroups.

1* A semilattice is a commutative idempotent semigroup. We
may impose a partial ordering on a semilattice S by defining

x <^ y if xy = x .
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Under this ordering, any two elements x,y e S have a greatest lower
bound, namely their product xy. S is called a meet semilattice. It
may be that x and y have a least upper bound w e S; if so, we define

x + y = w .

Thus + is a partial operation on S, and x + y is called the join of x
and 7/. If S is finite, and if x and y have a common upper bound,
then x + y exists and

x + y = 77{2 GiS ^ ί i ; and z*z y} .

The least element of a semilattice, if it exists, is denoted by 0; the
greatest element, if it exists, by 1.

A dual ideal of a semilattice S is a set D £ S satisfying (i)
di, dg G JD implies d ^ eD, and (ii) x^ deD implies xeD. We will
denote the principal dual ideal above x by 1/x, i.e.,

I/a? = ( ^ S : ^ ^ } .

For reference we note that if x + y is defined, then

I/a? Π 1/2/ = l/x + y .

If S and Γ are semilattices, then S x T will denote the (external)
direct product of S and T. We shall use round symbols (Π, U) £°r

set operations, and sharp symbols (A, V) ί ° r lattice operations.
The following theorem is basic to the study of semilattice con-

gruences.

THEOREM 1. [9] Let 2 denote the two-element semilattice. If
S is any semilattice and D is a dual ideal of S, then the mapping
f: S -> 2 defined by

l if xeD

0 if xϊD

is a homomorphism. Thus 2 is the only subdirectly irreducible semi-
lattice, and the dual of Θ(S) is a point lattice (Θ(S) is a copoint
lattice).

In the rest of this section we note some easily provable facts
about the congruence lattice of a semilattice S.

(1) Suppose θ(S) is atomic, and let A be the set of atoms of
Θ(S). Let x* denote the pseudo-complement of x. Then if aeA,a*
is a coatom of Θ(S), and 0 is a unique irredundant meet of {α*: a e A}.
Hence S is a unique subdirect product of | A \ copies of 2, but of no
fewer.
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It is not hard to show that if θ covers 0 in Θ(S) then θ covers
0 in Π(S), the partition lattice on S. From this and Theorem 1 it
follows that

(2) Θ(S) is semi modular and if Θ(S) is finite and c is the number
of coatoms of Θ(S) then

άimθ(S) = c = | S | - 1 .

(3) Θ(S) is relatively pseudo-complemented [9].
A lattice L is called locally distributive if the quotient sublattices

uja is distributive for all ae L, where ua is the join of the elements
covering a. In a compactly generated lattice, local distributivity is
equivalent to the conjunction of semimodularity and relatively pseudo-
complementation [3]. Hence

(4) Θ(S) is locally distributive.
The problem of characterizing all lattices isomorphic to congruence

lattices of semilattices remains open. The above conditions are not
sufficient, even in the finite case.

2* In this section we prove the main result of this paper•

THEOREM 2. Let δ be a nontrivίal lattice identity. Then there
exists a finite semilattice S(δ) such that δ fails in the congruence
lattice θ(S(δ)).

The theorem is an immediate consequence of Lemmas 1 and 4 to
be proven below.

LEMMA 1. Let S be a finite meet semilattice, and let S^{S) be the
lattice of (partial) join-subalgebras of S, with 0 e S considered as a
distinguished element. Then the congruence lattice Θ(S) is dually
isomorphic to

A partial join subalgebra of S is a subset containing 0 and closed
under joins, whenever they exist.

Proof. The dual atoms of Θ(S) are the partitions ψd = (XId)
(S — 1/d) for 0 Φ d e S. On the other hand, the atoms of 6^(S) are
the subalgebras ξd = {0, d) for 0 Φ d e S. We want to show that the
mapping ψd —> ξd induces a dual isomorphism of Θ(S) onto £^(S). Since
Θ(S) is a copoint lattice and S^{S) is a point lattice, it is sufficient to
show that their closure operations are duals under the mapping, i.e.,
that

Ψe*£ Ψd, Λ Λ fdk if and only if ζc ^ ξdl V V ζdk
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This is equivalent to

ψe :> ψdi Λ Λ ψdk if and only if ce (dχ, , dk}

where (d19 , dk} denotes the join subalgebra generated by {dly , dk}.
Notice that the equivalence classes of ψdχ A Λ ψdk are

(ίΊ l/d< - U 1/dy)
Vie/ jelc /

for J S {1, , fc}. If ψ\. ̂  α/rdi Λ Λ ψdjc then each of these classes
is contained in either 1/c or S — 1/c. Considered the ψdχ A Λ ψdk —
class which contains c. Then c is the least element of that class,
and thus

c — Σ di for some / £ {1, , k] .
i e /

Hence CG <dlf ••, dk).
Conversely, if c e (dx, , dk}, then c = ΣieIdi for some / £

{1, •••,&}• Thus the congruence Aieiψd; has one class equal to 1/c
and the rest contained in S — 1/c. Hence

Ψc ̂  .Λ ψdi ^ ψd1 Λ Λ ψ^ .

This completes the proof of Lemma 1.

Suppose a ^ τ is a nontrivial lattice identity, i.e., σ <£ r does not
hold in a free lattice. Then we construct a finite semilattice S(σ)
(depending only on σ) such that σ ^ τ fails in S^{S{σ)). Combined
with Lemma 1, this will prove Theorem 2.

Let X = {x, y, z, •• •} be a countable set, and let FL(X) donote
the free lattice on X. For each element σ e FL(X) we will define
a finite semilattice S(σ). First of all we write each σeFL(X) in
canonical form. Then we define

S(x) = 2 for x e X

Sfo V <78) = S(σj x S(σ2)

5(^ Λ σ2) - Sί^) x S(ί7a) - Γ

where

r = i/(i, o) u

Let us look more carefully at the construction. If S(σx) and S(σ2)
are lattices, then Sfa) x S(σ2) — Γ is meet-closed and has a unit
element; hence it is a lattice. It follows by induction that S(σ) is
a lattice for each σ e FL(X). We need to know how to compute joins
in S(σ). In S{σ1 V σz) joins are of course taken componentwise. In
S(σ1 A σ2) we have
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f r2) + (8lf s2)

fa + 8l9 r2 + s2) if rt + sL Φ 1 and r2 + s2 ^ 1

(1, 1) if n + sx = 1 or r2 + s2 = 1 .

In any S(σ) let us denote (1, 1) by 1.
For each σ e FL(X) we now define a homomorphism φσ of FL{X)

into £f(S{σ)). We do this by associating with each p i a join-sub-
algebra 9>σ(2/) of S(σ), and extending this map to a homomorphism in
the (unique) natural way. Once again we proceed inductively, with
σ G FL(X) written in canonical form. For y e X we set

S(x) if y = x

{0} if y Φ x

Φo^oM = {(n, n ) : n e ^ ( l / ) , 2̂ e ^2(i/)}

^ l Λσ2(l/) = {(n, *V): n e ^ ( y ) - {1}, r 2 e 9>ff2(i/) - {1}}

U Λ(φσi(y), φσ2(y))

where

(0 if l ^ A and 1 ^ 5
A { A > B ) - ( { i } if l e A or l e i ? .

Our computations will be based upon the following lemma.

LEMMA 2. // ρeFL(X), then
( i ) Φo^iP) = 9^(0 x ^σ2(ί>)

(ii) 9>ffιΛα2(|t>) - {1} - {(r, s) e ^(/o) x ^ 2 ( |θ): r Φ 1 α^d s ^ 1}.

Proof. We prove (ii); the proof of (i) is similar but easier. We

proceed by induction on the length of p. For p = y e X the lemma

is immediate from the definitions. Now note that since Oe T for

every TeS^(S(σ))9 we have

T,V T2 = {t, + t2: tλ e Tly t2 e T2) .

Hence if p = pγ V Pv then by (*) we have

Ψa^a^P) ~ {1} - Ψa^a%(Pd V ^A, 2 (ft) ~ {1}

= {(^i, Si) + (n, s2): (r1 ? sx) e <POl^2{Pd >

(r2, s2) e ^ l Λ β l ( f t ) , n + r 2 ^ 1, s, + s2 ^ 1} .

By t h e inductive hypothesis we have

(n, s4) G φσιAσi(Pi) - {1} = 9>βl(ft) - {1} x φ^ipt) - {1}

for i = 1, 2 and hence
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Po^ip) ~ {l} = {(r,s)eφσi(p) x φσ2(p):r^l and s Φ 1} .

On the other hand, if p = px A p2> then

Ψo^ip) - {1} - 9>Wft) ~ W n ?V«2(ft) - {1}

and the conclusion of the lemma follows.

LEMMA 3 If peFL(X), then leφp(ρ).

Proof. As usual we proceed by induction on the length of p.
If p — y e X the lemma follows from the definitions. If p = ργ V ft>
then leφp.(Pi) (i = 1, 2), and thus by Lemma 2 (i) we have

(l,0)e?>,(ft) and (0,1) e <P,(ft)

from which it follows that leφp(pj) V 9>,(ft) = <PP(P)
lί p = Pί A ft, we can again assume 1 e <PP.(Pi) for i = 1, 2. We

need to show that l 6 9P l Λ / ) ί(ft). We prove a slightly stronger state-
ment: if leφPl(σ), then leφPlAP2(σ). If σ = yeX this is immediate.
Suppose (7 = σ1 V 0"2> then 1 e ΨPl{o^ V ΨPl{

σ2) and hence 1 = ίx + ί2,
where ti^φPl(σ^. If £x ̂  1, ί2 ^ 1> then by Lemma 2 (ii) we have

1 - (ί l f 0) + (t2, 0) G <PPl*Pz(σύ V

If t{ = 1 for some i then by induction 1 e ΦPl(θi) implies

1 6 9V,afa) S Φp^pfo)

Suppose σ = σλ A o2. Then 1 e ΨPι{o^ ΓΊ ΨPl{o^ By induction 1 e
^ îΛί>2(̂ i) for i = 1, 2 and we are done.

LEMMA 4. If σ ^τ in FL{X), then 1 g 9>α(τ).

Assume we have proven Lemma 4. Then Lemmas 3 and 4 com-
bine to yield: 1 e <Pσ(τ) if and only if σ <£ τ in FL(X). Hence <Pσ(tf) S
^σ(r) if and only if σ ^ τ in FL(X), and Theorem 2 follows.

Proof of Lemma 4. Suppose the lemma is false. Let σ be a
word of minimum length such that 1 e <Pσ(τ') for some τf such that
o S τ' ίn FL(X). Let τ be of minimal length such that σ j£ τ and
l€?ff(r). We will show that these conditions lead to a contradiction.
The cases σ e X, σ = σλ \/ σ2, σ = σλ A o2, and r e l o r r ^ ^ Λ ^ are
easy to handle. Let us assume, then, that σ = σt Λ o2 and τ = τx V τ2

Then since σ j£ r we have

σ ^ τλ and σ ^ τ2 and σί ^ τ and σ2 ^ r .
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Since 1 e Ψo(τ) = φa(τ^ V <Pσ(τ2), there exist tt e 9\,(τ4) such that t, + ίa = 1.
If ί* = 1 for some i then by the minimal length of τ we have σ ^ r o

a contradiction. Thus U Φ 1 and by Lemma 2 (ii) we can write
U = (ri9 Si) where r< e <pσi(Ti) and s< e <Pτ%(τ?). Now either rx + r2 =1 in
S(σλ), which means leφ^τ,) V ^σi(τ2) = ^ ( r ) and hence σx <£ τ, or
Si + s2 = 1 and <72 <̂  r. Both these statements are contradictions.

Since the semilattices S(σ) constructed above are in fact lattices,
they are join semilattices. Thus, the above proof shows that any
nontrivial lattice identity fails in the subalgebra lattice of some finite
semilattice.

Now the congruence lattices of lattices satisfy every nontrivial
lattice identity, while those of semilattices satisfy no identity. It is
reasonable then to ask if there is some "natural" restricted class 5ίΓ
of semilattices such that the congruence lattices of semilattices in
J ^ satisfy some lattice identity.

One such class is known [5]. A simple argument based on
Theorem 1 shows that Θ(S) is nonmodular if and only if S contains
a pair of noncomparable elements with a common upper bound. Hence
if S is finite Θ(S) is either nonmodular, or else it is isomorphic to
the Boolean algebra of subsets of some set.

Ot the other hand, the semilattices S(σ) constructed in § 2 are in
fact lattices; in particular, the join of every pair of elements is de-
fined. It follows from Theorem 1 that S(σ) can be imbedded as a join
semilattice into a Boolean algebra B(σ). Considering B(σ) as a meet
semilattice, we see that every nontrivial lattice identity fails in the
(semilattice) congruence of some finite Boolean algebra.

3* We can now prove an interesting corollary about varieties of
semigroups. Let R denote the two-element semigroup with multipli-
cation law xy = y; L the two-element semigroup with multiplication
law xy = x; and C the two-element semigroup with constant multipli-
cation. The following theorem is due to T. Evans [6].

THEOREM 3. The atoms of the lattice of varieties of semigroups
are the varieties generated by R, L, C, 2 (the variety of all semilat-
tices), and the cyclic groups of prime order. If a nontrivial variety
of semigroups does not contain R, L, C, or 2, then it is a subvariety
of &n, the variety of groups of exponent dividing n, for some finite n.

Now if T is a semigroup in the variety generated by R, L, or C,
then Θ(T) is just the partition lattice on T. Hence Theorems 2 and
3 combine to give the following corollary.

COROLLARY. If T* is a semigroup variety all of whose congruence
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lattices satisfy some fixed nontrivίal lattice identity, then ψ* is a
subvariety of &n for some finite n.
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