Pacific Journal of Mathematics

A combinatorial problem in finite fields. I.

Gerald Myerson

Article information

Source
Pacific J. Math., Volume 82, Number 1 (1979), 179-187.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102785070

Mathematical Reviews number (MathSciNet)
MR549842

Zentralblatt MATH identifier
0408.12019

Subjects
Primary: 05A15: Exact enumeration problems, generating functions [See also 33Cxx, 33Dxx]
Secondary: 12C20

Citation

Myerson, Gerald. A combinatorial problem in finite fields. I. Pacific J. Math. 82 (1979), no. 1, 179--187. https://projecteuclid.org/euclid.pjm/1102785070


Export citation

References

  • [1] L. D. Baumert and H. Fredricksen, The cyclotomic numbers of order eighteen with applications to difference sets, Math. Comp., 21 (1967), 204-219.
  • [2] L. E. Dickson, Cyclotomy, higher congruences, and Waring}sproblem, Amer. J. Math., 57 (1935), 391-424.
  • [3] L. E. Dickson, Linear Groups, Dover 1958.
  • [4] J. B. Muskat, The cyclotomic numbersof order fourteen, Acta Arithmetica, 11 (1965/6), 263-279.
  • [5] J. B. Muskat and A. L. Whiteman, The cyclotomic numbers of order twenty, Acta Arith. 17 (1970), 185-216.
  • [6] A. R. Rajwade, The period equation for primes p congruent to 1 (Mod 5), Proc. Camb. Phil. Soc, 69 (1971), 153-155.
  • [7] T. Storer, Cyclotomy and Difference Sets, Markham 1967.
  • [8] A. L. Whiteman, The cyclotomic numbersof order sixteen, Trans. Amer. Math. Soc, 86 (1957), 401-413.
  • [9] A. L. Whiteman, The cyclotomic numbers of order ten, Proc. Symp. Appl. Math., 10, 95-111.
  • [10] A. L. Whiteman, The cyclotomic numbers of order twelve, Acta Arith., 6 (1960), 53-76.
  • [11] G.Myerson, A combinatorial problem in finite fields, II,to appear in Quarterly J. Math.

See also

  • Gerald Myerson. A combinatorial problem in finite fields. {II}. II [MR 81i:05014] Quart. J. Math. Oxford Ser. (2) 31 1980 122 219--231.