A COMBINATORIAL PROBLEM IN FINITE FIELDS, I

GERALD MYERSON

Given a subgroup G of the multiplicative group of a finite field, we investigate the number of representations of an arbitrary field element as a sum of elements, one from each coset of G. When G is of small index, the theory of cyclotomy yields exact results. For all other G, we obtain good estimates.

This paper formed a portion of the author's doctoral dissertation.

Let p = 2n + 1 be an odd prime. Consider the 2^n sums represented by the expression

$$\pm 1 \pm 2 \pm 3 \pm \cdots \pm n$$
 .

How do these sums distribute themselves among the residue classes modulo p? The answer is, as uniformly as possible; in fact, if we define N(a) as the number of ways of choosing the signs so that $\pm 1 \pm 2 \pm \cdots \pm n \equiv a \pmod{p}$ then we have

THEOREM 1.

$$egin{aligned} N(a) &= rac{1}{p} \Big(2^n \ - \Big(rac{2}{p} \Big) \Big) \ for \ a
eq 0 \ (ext{mod} \ p) \ , \ N(0) &= rac{1}{p} \Big(2^n \ - \Big(rac{2}{p} \Big) \Big) + \Big(rac{2}{p} \Big) \ . \end{aligned}$$

Here (2/p) is the Legendre symbol, that is,

$$\left(\frac{2}{p}\right) = \begin{cases} 1 & \text{if } 2 \text{ is a quadratic residue (mod p)} \\ -1 & \text{if } 2 \text{ is not a quadratic residue (mod p)} \end{cases}.$$

Our proof of Theorem 1 will rest on the following lemmas.

LEMMA 2. If $ab \neq 0 \pmod{p}$ then N(a) = N(b).

Proof. Assume $\sum_{k=1}^{n} u_k k \equiv a \pmod{p}$, with $u_k \in \{1, -1\}$. Since $ab \not\equiv 0 \pmod{p}$ there is a c such that $ac \equiv b \pmod{p}$. Thus we have $\sum_{k=1}^{n} u_k ck \equiv b \pmod{p}$. Now for $k=1, 2, \dots, n$, let $ck \equiv u_k'm_k \pmod{p}$, where $1 \leq m_k \leq n$, $u_k' \in \{1, -1\}$; these conditions determine m_k and u'_k uniquely. Thus,

$$b\equiv\sum_{k=1}^n u_kck\equiv\sum_{k=1}^n u_ku'_km_k\equiv\sum_{k=1}^n u_k''m_k \pmod{p}$$
 ,