A COMBINATORIAL PROBLEM IN FINITE FIELDS, I

Gerald Myerson

Abstract

Given a subgroup G of the multiplicative group of a finite field, we investigate the number of representations of an arbitrary field element as a sum of elements, one from each coset of G. When G is of small index, the theory of cyclotomy yields exact results. For all other G, we obtain good estimates.

This paper formed a portion of the author's doctoral dissertation.

Let $p=2 n+1$ be an odd prime. Consider the 2^{n} sums represented by the expression

$$
\pm 1 \pm 2 \pm 3 \pm \cdots \pm n
$$

How do these sums distribute themselves among the residue classes modulo p ? The answer is, as uniformly as possible; in fact, if we define $N(a)$ as the number of ways of choosing the signs so that $\pm 1 \pm 2 \pm \cdots \pm n \equiv a(\bmod p)$ then we have

Theorem 1.

$$
\begin{aligned}
& N(a)=\frac{1}{p}\left(2^{n}-\left(\frac{2}{p}\right)\right) \text { for } a \neq 0(\bmod p), \\
& N(0)=\frac{1}{p}\left(2^{n}-\left(\frac{2}{p}\right)\right)+\left(\frac{2}{p}\right)
\end{aligned}
$$

Here (2/p) is the Legendre symbol, that is,

$$
\left(\frac{2}{p}\right)=\left\{\begin{array}{l}
1 \text { if } 2 \text { is a quadratic residue }(\bmod p) \\
-1 \text { if } 2 \text { is not a quadratic residue }(\bmod p)
\end{array}\right.
$$

Our proof of Theorem 1 will rest on the following lemmas.
Lemma 2. If $a b \not \equiv 0(\bmod p)$ then $N(a)=N(b)$.
Proof. Assume $\sum_{k=1}^{n} u_{k} k \equiv a(\bmod p)$, with $u_{k} \in\{1,-1\}$. Since $a b \not \equiv 0(\bmod p)$ there is a c such that $a c \equiv b(\bmod p)$. Thus we have $\sum_{k=1}^{n} u_{k} c k \equiv b(\bmod p)$. Now for $k=1,2, \cdots, n$, let $c k \equiv u_{k}^{\prime} m_{k}(\bmod p)$, where $1 \leqq m_{k} \leqq n, u_{k}{ }^{\prime} \in\{1,-1\}$; these conditions determine m_{k} and u_{k}^{\prime} uniquely. Thus,

$$
b \equiv \sum_{k=1}^{n} u_{k} c k \equiv \sum_{k=1}^{n} u_{k} u_{k}^{\prime} m_{k} \equiv \sum_{k=1}^{n} u_{k}^{\prime \prime} m_{k}(\bmod p),
$$

