Pacific Journal of Mathematics

Measures as functionals on uniformly continuous functions.

Jan K. Pachl

Article information

Source
Pacific J. Math., Volume 82, Number 2 (1979), 515-521.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102784893

Mathematical Reviews number (MathSciNet)
MR551709

Zentralblatt MATH identifier
0419.28006

Subjects
Primary: 28A33: Spaces of measures, convergence of measures [See also 46E27, 60Bxx]
Secondary: 46E27: Spaces of measures [See also 28A33, 46Gxx]

Citation

Pachl, Jan K. Measures as functionals on uniformly continuous functions. Pacific J. Math. 82 (1979), no. 2, 515--521. https://projecteuclid.org/euclid.pjm/1102784893


Export citation

References

  • [1] J. B. Conway, A theorem on sequential convergence of measures and some applica- tions, Pacific J. Math., 28 (1969), 53-60.
  • [2] M. M. Day, Normed linear spaces, 2nd Edition, New York 1962.
  • [3] R. M. Dudley, Convergence of Baire measures, Studia Math., 27 (1966), 251-268. Correction:Studia Math., 51 (1974), 275.
  • [4] Z. Frolk, Measure-fine uniform spaces I, Lecture Notes in Mathematics No. 541, 403-413; Springer-Verlag 1976.
  • [5] Z. Frolk, J. Pachl and M. Zahradnk, Examples of uniform measures, Proc. Conf. "Topology and Measure" (Zinnowitz 1974), Ernst-Moritz-Arndt-Universitat Greifswald 1978.
  • [6] J. L. Kelley, General Topology, Princeton 1955.
  • [7] L. Le Cam, Note on a certain class of measures, unpublished.
  • [8] J. Pachl, Free uniform measures on sub-inversion-closed spaces, Comment. Math. Univ. Carolinae, 17 (1976), 291-306.
  • [9] J. Pachl, Compactness in spaces of uniformmeasures, Comment. Math. Univ. Carolinae, 16 (1975), 795-797.
  • [10] M. Rome, Vespace M{T), Publ. Dept. Math. (Lyon) 9-1 (1972), 37-60.
  • [11] F. D. Sentilles, Bounded continuous functionson a completely regularspace, Trans. Amer. Math. Soc, 168 (1972), 311-336.
  • [12] F. D. Sentilles and R. F. Wheeler, Linear functionaland partitions of unity in Cb(X), Duke Math. J., 41 (1974), 483-496.
  • [13] M. Zahradnk, ^-continuous partitions of unity, Czechoslovak Math. J., 26 (1976), 319-329.