Pacific Journal of Mathematics

Subobjects of virtual groups.

Arlan Ramsay

Article information

Source
Pacific J. Math., Volume 87, Number 2 (1980), 389-454.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102779974

Mathematical Reviews number (MathSciNet)
MR592744

Zentralblatt MATH identifier
0453.22005

Subjects
Primary: 22D40: Ergodic theory on groups [See also 28Dxx]
Secondary: 28C10: Set functions and measures on topological groups or semigroups, Haar measures, invariant measures [See also 22Axx, 43A05]

Citation

Ramsay, Arlan. Subobjects of virtual groups. Pacific J. Math. 87 (1980), no. 2, 389--454. https://projecteuclid.org/euclid.pjm/1102779974


Export citation

References

  • [1] L. Auslander and C. C. Moore, Unitary representations of solvable Lie groups, Mem. Amer. Math. Soc, No. 62 (1966).
  • [2] Dang-Ngoc Nghiem, Decomposition et classification des systemes dynamiques, Bull. Soc. Math. France, 1O3 (1975), 149-175.
  • [3] J. Dixmier, les C*-Algebres et Leur Representations,Gauthier-Villars, Paris, 1964.
  • [4] E. Effros, Global structure in von Neumann algebras, Trans. Amer. Math. Soc, 121 (1966), 434-454.
  • [5] C. Ehresmann, Gattungen von lokalen Strukturen,Uber. Deutsch. Math. Verein.
  • [6] P. Hahn, Haar measure and Convolution Algebras on Ergodic Groupoids, Thesis, Harvard University, Cambridge, Mass., 1975.
  • [7] P. Hahn,The regular representationof measure groupoids, Trans. Amer. Math. Soc., 242 (1978), 5-72.
  • [8] P. Hahn, The -representations of amenable groupoids, preprint.
  • [9] A. Kleppner, Ergodic decompositions of quasi-invariant positive forms, preprint.
  • [10] K. Lange, A reciprocity theorem for ergodic actions, Trans. Amer. Math. Soc, 167 (1972), 59-78.
  • [11] G.W. Mackey, Borel structures in groups and their duals, Trans. Amer. Math. Soc, 85 (1957), 265-311.
  • [12] G.W. Mackey, Unitary representations of group extensions, L, Acta. Math., 99 (1958), 265-311.
  • [13] G.W. Mackey, Point realizations of transformationgroups, Illinois J. Math., 6 (1962), 327-335.
  • [14] G.W. Mackey, Infinite dimensional group representations, Bull. Amer. Math. Soc, 69 (1963), 628-686.
  • [15] G.W. Mackey,Ergodic theory, group theory, and differential geometry, Proc. Nat.Acad. Sci. U.S.A., 50 (1963), 1184-1191.
  • [16] G.W. Mackey, Ergodic theory and virtual groups, Math. Ann., 166 (1966), 187-207.
  • [17] J von Neumann, Zur operatorenmeihode in der klassischen mechanik, Ann. Math., 33 (1932), 587-642.
  • [18] A. Ramsay, Virtual groups and group actions, Adv. Math., 6 (1971), 253-322.
  • [19] A. Ramsay,Boolean duals of virtual groups, J. Functional Annal., 15 (1974), 56-101.
  • [20] A. Ramsay, Nontransitive quasiorbits in Mackey's analysis of group extensions, Acta Math., 137 (1976), 17-48.
  • [21] C. Series, Ergodic Actions of Product Groups, Harvard Ph. D. Thesis, 1976.
  • [22] J. J. Westman, Virtual group homomorphsms with dense range, Illinois J. Math., 20 (1976), 41-47.
  • [23] R. Zimmer, Amenable ergodic group actions and an application to Poisson bound- aries of random walks, J. Functional Anal., 27 (1978), 350-372.