Osaka Journal of Mathematics

A product property for the pluricomplex energy

Per Åhag, Urban Cegrell, and Hoàng Hiệp Phạm

Full-text: Open access


In this note we prove a product property for the pluricomplex energy, and then give some applications.

Article information

Osaka J. Math., Volume 47, Number 3 (2010), 637-650.

First available in Project Euclid: 24 September 2010

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 32U15: General pluripotential theory
Secondary: 31C15: Potentials and capacities


Åhag, Per; Cegrell, Urban; Phạm, Hoàng Hiệp. A product property for the pluricomplex energy. Osaka J. Math. 47 (2010), no. 3, 637--650.

Export citation


  • P. Å hag, U. Cegrell, R. Czyż and H.H. Ph\dam: Monge--Ampère measures on pluripolar sets, J. Math. Pures Appl. 92 (2009), 613--627.
  • P. Å hag, U. Cegrell, S. Kołodziej, H.H. Ph\dam and A. Zeriahi: Partial pluricomplex energy and integrability exponents of plurisubharmonic functions, Adv. Math. 222 (2009), 2036--2058.
  • P. Å hag, R. Czyż and H.H. Ph\dam: Concerning the energy class $\mathcalE_p$ for $0 < p < 1$, Ann. Polon. Math. 91 (2007), 119--130.
  • S. Benelkourchi, V. Guedj and A. Zeriahi: Plurisubharmonic functions with weak singularities, Acta Universitatis Upsaliensis 86, Proceedings of the conference in honour of C. Kiselman (``Kiselmanfest'', Uppsala, 2006), 57--74.
  • Z. B\locki: Equilibrium measure of a product subset of $\mathbbC^n$, Proc. Amer. Math. Soc. 128 (2000), 3595--3599.
  • U. Cegrell: Pluricomplex energy, Acta Math. 180 (1998), 187--217.
  • U. Cegrell: The general definition of the complex Monge--Ampère operator, Ann. Inst. Fourier (Grenoble) 54 (2004), 159--179.
  • U. Cegrell: Approximation of plurisubharmonic function in hyperconvex domains, Acta Universitatis Upsaliensis 86, Proceedings of the conference in honour of C. Kiselman (``Kiselmanfest'', Uppsala, 2006), 125--129.
  • U. Cegrell and J. Wiklund: A Monge--Ampère norm for delta-plurisubharmonic functions, Math. Scand. 97 (2005), 201--216.
  • U. Cegrell, S. Kolodziej and A. Zeriahi: Subextension of plurisubharmonic functions with weak singularities, Math. Z. 250 (2005), 7--22.
  • S.S. Chern, H.I. Levine and L. Nirenberg: Intrinsic norms on a complex manifold; in Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 119--139, 1969.
  • J. Diller, R. Dujardin and V. Guedj: Dynamics of meromorphic maps with small topological degree II: Energy and invariant measure, Commentarii Math. Helvet. (in press).
  • V. Guedj and A. Zeriahi: The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007), 442--482.
  • M. Klimek: Pluripotential Theory, Oxford Univ. Press, New York, 1991.
  • S. Ko\lodziej: The Complex Monge--Ampère Equation and Pluripotential Theory, Mem. Amer. Math. Soc. 178, 2005.
  • V.K. Nuay\~ên and H.H. Ph\dam: A comparison principle for the complex Monge--Ampère operator in Cegrell's classes and applications, Trans. Amer. Math. Soc. 361 (2009), 5539--5554.
  • J. Wiklund: Topics in pluripotential theory, Ph.D. thesis, Umeå university, 2004.
  • Y. Xing: A decomposition of complex Monge--Ampère measures, Ann. Polon. Math. 92 (2007), 191--195.
  • A. Zeriahi: Fonction de Green pluricomplexe à pôle à l'infini sur un espace de Stein parabolique et applications, Math. Scand. 69 (1991), 89--126.