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Abstract
In this note we prove a product property for the pluricompésergy, and then
give some applications.

1. Introduction

Throughout this note assume th@tC C", n > 1, is hyperconvex set. Recall that
an open sef2 € C" is called hyperconvex if it is bounded, connected, and ifrghe
exists a bounded plurisubharmonic functipn 2 — (—oo, 0) such that the closure of
the set{z € Q: ¢(2) < c} is compact inQ, for every c € (—oo, 0). The family of
all bounded plurisubharmonic functiogsdefined on2 such that lim_,; ¢(z) = 0O, for
every¢ € 392, and [, (dd®)" < 400, is denoted byo($2). The family & is the analog
of potentials for subharmonic functions in the classicaleptal theory. Heredd°® - )"
is the complex Monge—Ampére operator. The aim of this note igrove the following
theorem.

Main Theorem. Assume that2?; C C™, n; > 1, and 2, C C™, ny, > 1, are
two bounded hyperconvex domairmd let u € E(21), Uz € E(22). If u(z1, ) =
maxUi(z1), ux(z)), then

C ni+ny __ C ny C N2
(1.1) /Q . h(u)(ddu)™+ = /Q . h(u)(ddup)™ A (dduy)™,

for all upper semicontinuous functions oo, 0] — R.

It should be noted that the integrals in equality (1.1) candbehe same time;-oco.
A sufficient condition to make sure that they are finite is tditidnal assume that is
bounded. Equality (1.1) is also valid for all decreasingctionsh: (—oo, 0) — [0, +00)
(Corollary 2.2).

In the rest of this note we give some applications of our mhaeotem. Now we
follow [6], and define&,(R2), p > 0, to be the class of plurisubharmonic functioms
defined on<2 for which there exists a decreasing sequengé, [u; € &, that converges
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pointwise tou on €2, as j tends to+oo, and

sup [ (—u;)P(ddu;)" = supep(u;) < +oc.
iz1JQ j=1

If ue &p(R2), theney(u) < +oo ([6, 10]). It should be noted that it follows from [6]
that any function inf, is in £ and hence by [7] the operatodd° - )" is well defined
on &y, p > 0. The class€ is the largest set of non-positive plurisubharmonic func-
tions @ for which the complex Monge—Ampere operator is well-defingt])( These
convex cones are useful outside the field of pluripotentiabty (see e.g. [2, 12]). If
Uy € Ep,(R1), Uz € Ep,(R22), and u(z1, zo) = maxUi(z1), u2(z2)), then we prove that

U € Ep+p,(R21 X 27), and

epl+ P2 (U) = epl(ul)epz (Uz)

(Corollary 3.1). By using the idea from Example 2.6 in [3] wenstruct an example
that shows that Corollary 3.1 is optimal in the following sen Let p;, p2 > 0, then
there exist functionsi; € £p, (1), Uz € £p,(R22) such that

Uz, 22) = maxa(z), Ua(z2) ¢ |J  Eq(Qux )
a=0/9#p1+p2

(Example 3.3). Furthermore, our main theorem vyields, inoary 2.1, Wiklund’s prod-
uct property forF. This result was first obtained by Wiklund in [17].

Before proceeding, let us introduce some convenient motsiti Letu € £, then
by Theorem 5.11 in [7] there exist functiogs € & and f, € LL ((dd°,)"), f, =0
such that dd°u)" = f,(dd®p,)" + Bu. The non-negative measufk is such that there
exists a pluripolar seA € Q such thatg, (2 \ A) = 0. We shall use the notation that
ay = fu(dd¢y)" and B, refereing to the decomposition discussed hereu; l€ £(2;),
uy € £(22), then we prove that man(, up) € £(21 x R22), and Bmaxgr,uz) = Bur D Pu,
(Corollary 2.1 and Theorem 4.5).

For further information about pluripotential theory, ahe tomplex Monge—Ampére
operator, we refer to the monographs by Klimek ([14]), andodaiej ([15]).

2. Proof of Main Theorem

Proof of Main Theorem. Se®2 = ©Q; x Q5, N = ng + n,. Without loss of gener-
ality we can assume that;, u, < 0.

CASE I:  Assume thatu; € E(21) N C®°(R1), Us € &(R2) N C>®(Ry), andh €
C5°((—o0, 0),R). To see thah(u) is the difference of two functions ifip(2) we show
that there are two convex and increasing functibpd, € C((—oc, 0),R) with h1(0) =
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h,(0) = 0 andh; +h, > Mx for a constantM > 0. Explicitly, choosea < 0 andb > 0
such that

a < inf (h(x) + S€ —b) < sugh(x) + S& —b) < 0,
supph x<0

where S > 0 is so large thah(x) + S& is convex and increasing. Now choobé > 0
such thatMx < a on supph. Then set

hi(X) = maxh(x) + S& —b, Mx) and hy(x) = max(Se — b, Mx).
Assume for the moment that € £,(Q21 x €2) (this is later proved in Case V). The
facts thatu = u; on the support ofddu)™ A dd®h(u), andu = u, on the support of
dd®h(u) A (dd®uy)™, yield together with integration by parts ([7]) that
/ h(u)(dd®u)" = / u(dd®u)™* A dd®h(u) = / uz(dd®u)*t A dd®h(u)
Q Q Q
= / h(u)(ddu)" t Add®uy = --- = / h(u)(dd®u)™ A (ddu)™
Q Q
= / u(ddu)™ 1 A dd®h(u) A (ddup)™
Q
= / ux(ddu)™ 1 A dd®h(u) A (ddCuy)™
Q

_ / h(u)(dd®u)™* A (dd°un)™ A dd°u,
Q

=/h(u)(ddcul)"lx\(dd°u2)”2.

Q

Thus,
/h(u)(ddcu)”=/ h(u)(dd®uy)™ A (ddup)™.
Q Q

Casell:  Assume thatu; € &(21), Uz € £(22), andh € C§°((—o0, 0),R). From [8]
it follows that there exist two decreasing sequencé;? pi € E(21) NC>(£4), and [Ji],
ui € £(22) N C>(Ry), that converge pointwise t@; andu,, respectively, ag — +oc.
Setul = max(ui, u%). Case | yields that

/mmﬁ—mwmw&wW=/hwmwmw
Q Q
- / h(u)dd®ul)™ A (ddul)™
Q

=/mmﬂ—mwmm&®WAw&®W.
Q
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If we let j — 400, then Proposition 5.1 [7] shows that the left hand side tetads
Jo h(u)(dd®u)", and also using Fubini's theorem we see that the right handsté¢o
Jo h(u)(dd®up)™ A (ddCup)™.
CAsE lll:  For this and the next case assume that C((—oo, 0], R) and let
M = sup|ui(zi)| + [U2(22)[: z1 € Q1, 22 € Qa}.

Furthermore, we choose a sequenkg],[h; € C°((—oo, 0), R) such that

supsup|h;(t)|: t € [-M, O]} < 400,
j>1

and which converges uniformly tb for all compact sets off{M, 0) asj — +oc.
From Case Il we now get that

2.1) /Q h; (u)(ddCu)” = /Q h; (u)(ddus)™ A (ddCu,)™.

This case is finished by letting— +oco0 and using Lebesgue’s dominated convergence
theorem together with (2.1).

CaselV: Ingeneral case, we choose a decreasing sequénké|: C((—oo, 0],R),
that converges pointwise toon [-M, 0] asj — +o0. By Case Ill we have that

[ m@eear = [ nwddu A @du,
JQ Q
and this proof can be finished as Case lII.

CASE V: It remains to show that = max(y, uUp) € &(2). This follows im-
mediately from [17], but here we give a direct proof. Fix € 3, and wg € Q.
Let g1, and g, be the pluricomplex Green functions defined ©q, and Q,, with
poles inzy, and wo, respectively. It follows from [11] and Proposition 3.4 ih9] that
max@zi, g2, —1) € (). Define

ul =max(y, j max@i, —1)), ub=max@s, j max@., —1)), and ul =max@., ub).

Then max(n{, ug) > j max@i, 92, —1) € &(2) and we have proved in Case Il that
/ (ddCul)tne = / (ddcu{)”l/ (ddcui)nz < / (dd®up)™ [ (dd®up)™,
QixQ Q1 Q0 Q1 Q2

and since ('] decreases pointwise 10 as j — +oo, it follows that u € &(<). O

In Corollary 2.1, we show how our main theorem yields Wiklisngroduct prop-
erty for F. The result in Corollary 2.1 was first obtained in [17].
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Corollary 2.1. Assume that2, ¢ C™, n; > 1, and , Cc C™, n, > 1, are

two bounded hyperconvex domairend let w € F(21), Uz € F(R2). If u(zy, z0) =
maxUi(z1), ux(z)), then ue F(21 x Q27), and

/ (ddu)™*™ = [ (ddu)™ [ (dduy)™.
QxQp Q1 Q;

Furthermore if u; € £(21), Uz € () then Uz, z2) = max@Ui(zi), Ux(z2)) €
S(Ql X Qg).

Proof. We sef2 = Q1 xQ, andn = n; +n,. From [8] it follows that there exist
two decreasing sequencas], ul € Eo(21)NC®(Q1), and B3], ub € E(22)NCX(Ry),
that converge pointwise to; andu,, respectively, ag — +oc. An application of the
main theorem gives the first two statements. The third stat¢mow follows from the
second, since every function i) is locally equal to a function i, ]

Corollary 2.2. Assume that2; ¢ C™, n; > 1, and , C C™, n, > 1, are

two bounded hyperconvex domaired let u € E(R1), Uz € (). If u(zy, 2) =
maxUi(z1), uz(z)), then

/ h(u)(dd®u)™*"2 = / h(u)(dd®uy)™ A (ddup)™,
Q1% Q21X
for all decreasing functions h(—oo, 0) — [0, 400).

Proof. LetQ = Q1 x Q5, N =n1 + ny, and

M = sup|uy(z1)| + |u2(22)]: 21 € Q1, 22 € Q).

Let [h;], hj: C((—oo, 0], R), be a sequence that converges pointwisehtas j —
~+o00, and

supsug|h;(t)|: t € [-M, 0)} < +o0.
j=1
By our main theorem we have that
/ hj(u)(dd°u)" = / hj(u)(ddus)™ A (ddup)™.
Q Q

Let | - 400, then Lebesgue’s dominated convergence theorem compglageproof.
O
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3. Some applications

Corollary 3.1. Assume tha2; c C™, n; > 1, and , C C™, ny > 1, are two
bounded hyperconvex domajinand let u € £p,(21), Uz € Ep,(22). If u(zy, 22) =
maxUi(zy), ux(z2)), then ue &, 4, (21 x Q2), and

epl+ P2 (U) = epl (Ul)epz (UZ)-

Proof. SetQ = Q1 xQy, n=ny+ny andp = p; + po. By Lemma 2.1 in [10]
we can find two decreases sequenaejls] [u1 € &(21), and pz] u2 € &(22), that
converge pointwise tai; and uy, respectively, ag — +o0o. Furthermore, we have that
[(ddCu i)“l] and [(dd°ué)“2] are increasing sequences that converge weaklg &5u; )™
and ddcug)”Z, asj — +oo. Let [ul] be the decreasing sequence that is defined by
ul = max(ul, u2) € &(). This construction yields thatuf] converges pointwise to
u = max(s, Up). Using the main theorem with(t) = (—t)P, and Fubini’'s theorem we
have that

ep(u) < lim ep(ul) = lim /h(uj)(ddcuj)“

j—+o0 j—>+oo

= lim / hu)dd®ul)™ A (dd°ul)™
j—o+o0 JQ

=, im / (—ub)P (—ud)P(ddul)™ A (ddul)™ < lim ep, (u})ep,(u))
j—>4o00 JQ j—o0

= epl(ul)epz(UZ)- O

We will need the following lemma in Example 3.3.
Lemma 3.2. Let0O< p<g. Then
Ep(Q)NEYR) C &(2) forall p=<t=q.

Proof. For 0< p < g choose (X « <1 such that = ap+ (1—«)q. By Holder's
inequality we have that for each e & () it holds that

/(—U)t(ddcv)” = /(_v)apﬂl—a)Q(ddcv)n
Q Q

a 1-«
< ( [ v)Pddv)" —o)idd))
_</Q( )P v)) (/Q( o) v))

Hence,

3.1 a(v) < ep(v) ey(v)" .
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Now let u € £,(2) N &(2). Lemma 2.1 in [10] implies that there exists a decreasing
sequenced;], u; € &, that converges pointwise o as j — oo,

jﬂrpoo ep(uj) = ep(u), and HIii‘nooeq(uj) = gy(u).

Inequality (3.1) yields that

supe(u;j) < supep(u;)“eq(u;) ™ < ep(u)“ey(u) .
J J

Thus,u € & with e (u) < ep(u)*eq(u)* . -

EXAMPLE 3.3. Assume thaf2, c C™, ny > 1, andQ, C C™, n, > 1, are two
bounded hyperconvex domains. In this example we show tleaé tbxist functionsi;
Ep (1), and uy € &, (L22) such that

Uz, 22) = max(a(z), az) ¢ |J &l x ).
q=0/q#p1+p2

PART I: In this part we prove that for givem > O with q # p1 + po, there
exist functionsu; € £, (21), Uz € £p,(22) such thatu(zy, zo) = maxUi(z1), Ux(z2)) ¢
Eq(R21 x Q). Let 01(z1) = go,(z1, @), and g2(z2) = 0e,(22, @) be the pluricomplex
Green function defined of, with pole atax € Q, k=1, 2. Let alsop;, p2 > 0.

CASE I:  Assume thatg > p; + p2, and letq; > p1, g2 > p2 be such thag =
01 + ¢2. For eachj € N set

vl = max(~%/Mgy, —j), vl =max(%/™g, —j), and vl =max@!, v)).
We have that

lim e, ()= lim (7)™ % =0,
i Pl( 1) i ( ) J
and

lim ey, (v)) = j lim_(27)"jP% =0,

j—>+o0o

Therefore by Lemma 2.5 in [3] we can choose subsequences{pf[izé], to get that

+00

400
3.2) u; = (Z v{) €&p(R1), and up;= <Z vg) € Ep,(22).

j=1 j=1
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Since there is no risk of ambiguity we also call these submecgs {){], [v%]. Corol-
lary 2.1, and Lemma 4.1 imply tha(v)) = (27)™*". Hence,

k k
& (Z vi> > eyv)) = (2m)m k.
j=1 j=1

Thus, >~/ vl ¢ £(Q1 x Q). On the other hand, we have fai, u, defined in (3.2)
thatu = u(z1, z2) = maxa(z1), Uz(22)) < >-;23 v/, which implies thatu ¢ £q(21 x Q7).

CAsE Il:  Assume thatq < p; + p2, and letqs < p1, g2 < p2 be such thafy =
01 + Q2. For eachj € N set

_ _ 1 . ) 1 _ o
v = max(J‘h/“lgl, —j), v) = max(lqzngz, —J,), and v = max@,, v)).
Then it is proved in a similar manner as in Case | that

U= U(z1, 22) = max@Us(z), U(z2)) ¢ &q(21 x Q22).

PART Il: By using Part | we shall complete this example. §gt= p + (=1)1/].
For eachj € N Part | ensures the existence of functiar}se £y, (1), U) € Ep,(22), with

ul = max@l, ub) ¢ & (Q1 x 22).
Choose a positive sequengs} of real numbers such that
+00 )
o= (S end) < cucen
j=1

and

+o0
Uy = (Z SI‘Ué) € gpz(QZ)'

j=1

Setu = max(u1, uz). Then Corollary 3.1 yields that € £p, 1, (21 x Q). Furthermore,
our construction implies that

gy = j
u < &j maxy, uy) = gju’,
and

ul ¢ &, ().
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Hence,u ¢ &g, (21 x ) for all j € N. For the argument of contradiction, assume that
U ¢ &(R21 x Q) for someq # p. Without loss of generality assume thagt- p. From
Lemma 3.2 it now follows that € &(R2; x €;) for all p <t <. Fix jo > 0 such
that p < gj, < d. Thenu € &, , and a contradiction is obtained, and this example is
completed.

In [13] (see also [4]), Guedj and Zeriahi introduced the daiing formalism: For
an increasing functiory : (—oo, 0] — (—o0, 0], they say that a plurisubharmonic func-
tion u is in &,(R) if there exists a decreasing sequenag],[ u; € &, that converges
pointwise tou on 2, asj tends to+oo, and

sup [ —x(uj)(ddu;)" < +oo.

jz1Ja
For example, ifx (t) = —(—t)P, then&, = &,, and if x is bounded withy (0) # O, then
&, = F. In general, we do not have th&t is contained inf. Another consequence
of our main is Corollary 3.4.

Corollary 3.4. Assume that2; ¢ C™, n; > 1, and Q, C C™, ny, > 1, are two
bounded hyperconvex domains. Let, x2: (—oo, 0] — (—o0, 0] be increasing func-
tions u; € &,,(R1), and w € &,,(20). If u(zy, z2) = maxui(zy), ux(z2)), then ue
&y (21 X 22).

Proof. LetQ = Q; x Q2, N =ng 4+ ny, and let [J{], [u%] be sequences as in the
proof of Corollary 2.1. Set) = maxi, u}). From Corollary 2.2 withh = x5, and
Fubini’s theorem it follows that

Tim / x1(U) xa(u)(dd?u) = fim / xa(u) xa(ul)(ddCul)™ A (ddCul)™
j—=oo Jo j—= Jq

IA

fim / (U aul)ddeuly A ddeul)
= Jo

IA

Tim / x1(uly(ddeuly™ / x2(uh)(ddul)™ < +oo0.
1 Q0

]—>o0 Q
Henceu e &_,,,,(€21 x Q7). O

4. The connection between max(, uy) and (dd®u;)™ A (dd®uy)™

Proposition 4.1. Assume thatf2 ¢ C", n> 1, is a bounded hyperconvex domain
and let w, u; € £(R). If u = max(y, uz) and (ddu;)™ A (dduz)™ vanishes on pluri-
polar sets then

(4.2) @du)™*™ >y, —u, (ddUg)™ A (ddup)™,
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where x,—y, iS the characteristic function for the séti; = uy} in €.

Proof. Without loss of generality we can assume thatu, < 0. Let [;], 0 <
aj < 1, be an increasing sequence of real number that converggésde j — +oo.
By in [16] we have that

(dd® max(jus, uz)™ A (dd® maxs, «juy))™
Z X{Olj U1>U2]ﬂ{u1<aju2}(ddc(xj ul)nl A (ddcaj Uz)nz

> & g, (A U™ A (d )™,
Let j — +oo, then (4.1) is obtained. .

Corollary 4.2. Assume that2 C C", n> 1, and let w, u, € F(2) be such that
/ (ddup)™ A (ddup)™ = 0,
{uiup}

and (dd®u;)™ A (dduy)™ vanishes on pluripolar sets. If &= max(y, up), then
(ddCu)™mt2 = (dduy)™ A (ddup)™.

Proof. Note that

/(OldCU)r”*”2 = /(dd°ul)”1/\(ddcuz)”2- -
Q Q

Corollary 4.3. Assume thatQ; ¢ C™, n; > 1, and Q, C C™, ny, > 1, are
two bounded hyperconvex domaing € F(Q21), Uz € F(22), and w, Uy € (21 x
Q2) be such that(dd®u;)™ A (dduz)™ vanishes on pluripolar sets. Se{(z, z2) =
max(Ui(z.), Ux(z2)). Then (dd®u)™*"2 = (dduy)™ A (dd°u,)™ if, and only if

/ (ddCup)™ A (dd°uy)™ = 0,
{ur7#Uz}

Proof. If (ddu)™*" = (ddu;)™ A (dd°u,)™, then we havefluﬁéuZ
(dd®u;)™ = 0. On the other hand, we have by Proposition 4.1 that

(ddeup)™ A
(ddu)" > xqu,=uy (dd®up)™ A (dduy)™
and, by Corollary 2.1,/(dd°u)™ A (dd°u,)™ = [(dd®u)”. Therefore, if
/ (dduy)™ A (dd°up)™ = 0,
{ur7uz}

then it follows that d®u)™*" = (dd°u;)™ A (ddup)". 0
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REMARK. The case whem; andu, are positive plurisubharmonic functions with

/‘ wdﬂhwl=b/ (ddu)™ =0,
{u1>0} {uz>0}

was proved in [5].

EXAMPLE 4.4. Letu; = max((1/2)In|z],In|z|), anduy = 2uy, then @d°uy)" =
(dd® max@uy, up))" = (1/2)8¢. But dd®u; A ddu, = 8. This shows that the condition:
(dd®up)™ A (ddCuz)™ vanishes on pluripolar sets, is necessary in Proposititin 4.

Let u € &, then by Theorem 5.11 in [7] there exist functiopg € & and f, €
LE.((dd°py)"), fu > 0 such thatdd°u)" = f,(dd°p,)" + By. The non-negative meas-
ure B, is such that there exists a pluripolar s&tc Q such thatg, (2 \ A) = 0. We
shall use the notation that, = f,(dd,)" and B, refereing to the decomposition dis-
cussed here.

Theorem 4.5. Assume thatQ, c C™, n; > 1, and Q, C C™, n, > 1, are

two bounded hyperconvex domairend let u € £(21), Uz € E(R). If u(zy, ) =
maxUi(z1), ux(z)), then

ﬁU = :BU1 ® ﬂUZ'

Proof. Setn = n; + n. Assume first that ifey, = 0, j = 1, 2. If we apply
Corollary 4.3 to max{;, m), j =1, 2 and letm tend to—oo we get that

(4.2) @dd®u)” = (dd® max(us, up)))™*" = (dd°uy)™ ® (ddu,)™.

For the general case we can without loss of generality asshateu; € F(Q1),
U, € F(Q). From [7] and Theorem 1 in [18] (or [1]), it follows that we rcdind
functions such that foj = 1, 2 satisfies the following properties:
o ¢ € F(Q)), vj € F(Q)),
e (dd;)" vanishes on pluripolar sets,
o (dd))" = ay,, (ddv))" = fu,,
(] (ijUj,ijUj,andeZ(pj—i-vj.
We now have that

max(s, v2) + maxps, v2) + max@s, ¢2) + max@:, ¢2) < max@s, uz) < max(s, v2).

By [7] every functiong € F with (dd°p)" vanishing on all pluripolar sets can be mi-
norized by the sum of a bounded function and a function wibthtearily small Monge—
Ampeére mass. Using Corollary 2.1 we thus find that the follmvineasures vanish on
pluripolar sets:

(dd® max(ps, v2))™t™, (dd® max(s, ¢2))™*", (dd® max(py, ¢2))™ .
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Hence (4.2) and Lemma 4.11 in [1] concludes this proof sitem t
,Bu = ,Bmax(ul,ug) = lgmax(vl,vz) = ,3v1 & ,sz = .Bul & ,Buz- O

EXAMPLE 4.6. If ¢ € PSH(Q) N LX.(2), then
/(—1//)(dd°<p)” <400 foral K e, v e PSH(R), v <O0.
K
The following example shows that there exists a functioa &(D?), such that

/Dz(_ In|zy|)(dd°@)? = +o0.

Set

+00
() = Z max(mji1
=1

then by Corollary 4.3 we have that

. 1
|| 12|n|22|1 _12>1

In|zy| . 1\\}* 1
(ddc max( j|61|, 12 |ﬂ|22|, _J2>) = Fd(f{|n|zl|=_j4} ® dU{In|Zz\X=—1/j4]-

Lemma 2.5 in [9] implies thap € E(D?). Furthermore, it holds that

+00

1
(ddp)® = > Fdd{ln\zl\=—i4l ® doyinjzl=—1/j)»
j=1

and therefore

/ (— Infza])(ddCg)?

+ool

> Z / (= In|zy|) do (Injze)=—j4 ® do (njzo|=—1/j4) = Z FJ4 = +o00.

j=1
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