A PRODUCT PROPERTY FOR THE PLURICOMPLEX ENERGY

PER ÅHAG, URBAN CEGRELL and PHAM HOÀNG HIỆP

(Received February 23, 2009)

Abstract

In this note we prove a product property for the pluricomplex energy, and then give some applications.

1. Introduction

Throughout this note assume that $\Omega \subseteq \mathbb{C}^n$, $n \geq 1$, is hyperconvex set. Recall that an open set $\Omega \subseteq \mathbb{C}^n$ is called hyperconvex if it is bounded, connected, and if there exists a bounded plurisubharmonic function $\varphi \colon \Omega \to (-\infty,0)$ such that the closure of the set $\{z \in \Omega \colon \varphi(z) < c\}$ is compact in Ω , for every $c \in (-\infty,0)$. The family of all bounded plurisubharmonic functions φ defined on Ω such that $\lim_{z \to \xi} \varphi(z) = 0$, for every $\xi \in \partial \Omega$, and $\int_{\Omega} (dd^c \varphi)^n < +\infty$, is denoted by $\mathcal{E}_0(\Omega)$. The family \mathcal{E}_0 is the analog of potentials for subharmonic functions in the classical potential theory. Here $(dd^c \cdot)^n$ is the complex Monge–Ampère operator. The aim of this note is to prove the following theorem.

Main Theorem. Assume that $\Omega_1 \subset \mathbb{C}^{n_1}$, $n_1 \geq 1$, and $\Omega_2 \subset \mathbb{C}^{n_2}$, $n_2 \geq 1$, are two bounded hyperconvex domains, and let $u_1 \in \mathcal{E}_0(\Omega_1)$, $u_2 \in \mathcal{E}_0(\Omega_2)$. If $u(z_1, z_2) = \max(u_1(z_1), u_2(z_2))$, then

(1.1)
$$\int_{\Omega_1 \times \Omega_2} h(u) (dd^c u)^{n_1 + n_2} = \int_{\Omega_1 \times \Omega_2} h(u) (dd^c u_1)^{n_1} \wedge (dd^c u_2)^{n_2},$$

for all upper semicontinuous functions $h: (-\infty, 0] \to \mathbb{R}$.

It should be noted that the integrals in equality (1.1) can be, at the same time, $-\infty$. A sufficient condition to make sure that they are finite is to additional assume that h is bounded. Equality (1.1) is also valid for all decreasing functions $h: (-\infty, 0) \to [0, +\infty)$ (Corollary 2.2).

In the rest of this note we give some applications of our main theorem. Now we follow [6], and define $\mathcal{E}_p(\Omega)$, p > 0, to be the class of plurisubharmonic functions u defined on Ω for which there exists a decreasing sequence $[u_j]$, $u_j \in \mathcal{E}_0$, that converges

²⁰⁰⁰ Mathematics Subject Classification. Primary 32U15; Secondary 31C15.

pointwise to u on Ω , as j tends to $+\infty$, and

$$\sup_{j\geq 1}\int_{\Omega}(-u_j)^p(dd^cu_j)^n=\sup_{j\geq 1}e_p(u_j)<+\infty.$$

If $u \in \mathcal{E}_p(\Omega)$, then $e_p(u) < +\infty$ ([6, 10]). It should be noted that it follows from [6] that any function in \mathcal{E}_p is in \mathcal{E} and hence by [7] the operator $(dd^c \cdot)^n$ is well defined on \mathcal{E}_p , p > 0. The class \mathcal{E} is the largest set of non-positive plurisubharmonic functions Ω for which the complex Monge-Ampère operator is well-defined ([7]). These convex cones are useful outside the field of pluripotential theory (see e.g. [2, 12]). If $u_1 \in \mathcal{E}_{p_1}(\Omega_1)$, $u_2 \in \mathcal{E}_{p_2}(\Omega_2)$, and $u(z_1, z_2) = \max(u_1(z_1), u_2(z_2))$, then we prove that $u \in \mathcal{E}_{p_1+p_2}(\Omega_1 \times \Omega_2)$, and

$$e_{p_1+p_2}(u) \le e_{p_1}(u_1)e_{p_2}(u_2)$$

(Corollary 3.1). By using the idea from Example 2.6 in [3] we construct an example that shows that Corollary 3.1 is optimal in the following sense: Let p_1 , $p_2 > 0$, then there exist functions $u_1 \in \mathcal{E}_{p_1}(\Omega_1)$, $u_2 \in \mathcal{E}_{p_2}(\Omega_2)$ such that

$$u(z_1, z_2) = \max(u_1(z_1), u_2(z_2)) \notin \bigcup_{\substack{q \ge 0/q \ne p_1 + p_2}} \mathcal{E}_q(\Omega_1 \times \Omega_2)$$

(Example 3.3). Furthermore, our main theorem yields, in Corollary 2.1, Wiklund's product property for \mathcal{F} . This result was first obtained by Wiklund in [17].

Before proceeding, let us introduce some convenient notations. Let $u \in \mathcal{E}$, then by Theorem 5.11 in [7] there exist functions $\phi_u \in \mathcal{E}_0$ and $f_u \in L^1_{loc}((dd^c\phi_u)^n)$, $f_u \geq 0$ such that $(dd^cu)^n = f_u(dd^c\phi_u)^n + \beta_u$. The non-negative measure β_u is such that there exists a pluripolar set $A \subseteq \Omega$ such that $\beta_u(\Omega \setminus A) = 0$. We shall use the notation that $\alpha_u = f_u(dd^c\phi_u)^n$ and β_u refereing to the decomposition discussed here. If $u_1 \in \mathcal{E}(\Omega_1)$, $u_2 \in \mathcal{E}(\Omega_2)$, then we prove that $\max(u_1, u_2) \in \mathcal{E}(\Omega_1 \times \Omega_2)$, and $\beta_{\max(u_1, u_2)} = \beta_{u_1} \otimes \beta_{u_2}$ (Corollary 2.1 and Theorem 4.5).

For further information about pluripotential theory, and the complex Monge–Ampère operator, we refer to the monographs by Klimek ([14]), and Kołodziej ([15]).

2. Proof of Main Theorem

Proof of Main Theorem. Set $\Omega = \Omega_1 \times \Omega_2$, $n = n_1 + n_2$. Without loss of generality we can assume that $u_1, u_2 < 0$.

CASE I: Assume that $u_1 \in \mathcal{E}_0(\Omega_1) \cap C^{\infty}(\Omega_1)$, $u_2 \in \mathcal{E}_0(\Omega_2) \cap C^{\infty}(\Omega_2)$, and $h \in C_0^{\infty}((-\infty, 0), \mathbb{R})$. To see that h(u) is the difference of two functions in $\mathcal{E}_0(\Omega)$ we show that there are two convex and increasing functions $h_1, h_2 \in C((-\infty, 0), \mathbb{R})$ with $h_1(0) = 0$

 $h_2(0) = 0$ and $h_1 + h_2 \ge Mx$ for a constant M > 0. Explicitly, choose a < 0 and b > 0 such that

$$a < \inf_{\text{supp } h} (h(x) + Se^x - b) \le \sup_{x < 0} (h(x) + Se^x - b) \le 0,$$

where S > 0 is so large that $h(x) + Se^x$ is convex and increasing. Now choose M > 0 such that Mx < a on supp h. Then set

$$h_1(x) = \max(h(x) + Se^x - b, Mx)$$
 and $h_2(x) = \max(Se^x - b, Mx)$.

Assume for the moment that $u \in \mathcal{E}_0(\Omega_1 \times \Omega_2)$ (this is later proved in Case V). The facts that $u = u_1$ on the support of $(dd^c u)^{n_2} \wedge dd^c h(u)$, and $u = u_2$ on the support of $dd^c h(u) \wedge (dd^c u_1)^{n_1}$, yield together with integration by parts ([7]) that

$$\int_{\Omega} h(u)(dd^{c}u)^{n} = \int_{\Omega} u(dd^{c}u)^{n-1} \wedge dd^{c}h(u) = \int_{\Omega} u_{1}(dd^{c}u)^{n-1} \wedge dd^{c}h(u)
= \int_{\Omega} h(u)(dd^{c}u)^{n-1} \wedge dd^{c}u_{1} = \dots = \int_{\Omega} h(u)(dd^{c}u)^{n_{2}} \wedge (dd^{c}u_{1})^{n_{1}}
= \int_{\Omega} u(dd^{c}u)^{n_{2}-1} \wedge dd^{c}h(u) \wedge (dd^{c}u_{1})^{n_{1}}
= \int_{\Omega} u_{2}(dd^{c}u)^{n_{2}-1} \wedge dd^{c}h(u) \wedge (dd^{c}u_{1})^{n_{1}}
= \int_{\Omega} h(u)(dd^{c}u)^{n_{2}-1} \wedge (dd^{c}u_{1})^{n_{1}} \wedge dd^{c}u_{2}
= \dots
= \int_{\Omega} h(u)(dd^{c}u_{1})^{n_{1}} \wedge (dd^{c}u_{2})^{n_{2}}.$$

Thus,

$$\int_{\Omega} h(u)(dd^c u)^n = \int_{\Omega} h(u)(dd^c u_1)^{n_1} \wedge (dd^c u_2)^{n_2}.$$

CASE II: Assume that $u_1 \in \mathcal{E}_0(\Omega_1)$, $u_2 \in \mathcal{E}_0(\Omega_2)$, and $h \in C_0^{\infty}((-\infty, 0), \mathbb{R})$. From [8] it follows that there exist two decreasing sequences $[u_1^j]$, $u_1^j \in \mathcal{E}_0(\Omega_1) \cap C^{\infty}(\Omega_1)$, and $[u_2^j]$, $u_2^j \in \mathcal{E}_0(\Omega_2) \cap C^{\infty}(\Omega_2)$, that converge pointwise to u_1 and u_2 , respectively, as $j \to +\infty$. Set $u^j = \max(u_1^j, u_2^j)$. Case I yields that

$$\begin{split} \int_{\Omega} (h_1(u^j) - h_2(u^j)) (dd^c u^j)^n &= \int_{\Omega} h(u^j) (dd^c u^j)^n \\ &= \int_{\Omega} h(u^j) (dd^c u_1^j)^{n_1} \wedge (dd^c u_2^j)^{n_2} \\ &= \int_{\Omega} (h_1(u^j) - h_2(u^j)) (dd^c u_1^j)^{n_1} \wedge (dd^c u_2^j)^{n_2}. \end{split}$$

If we let $j \to +\infty$, then Proposition 5.1 [7] shows that the left hand side tends to $\int_{\Omega} h(u)(dd^c u)^n$, and also using Fubini's theorem we see that the right hand tends to $\int_{\Omega} h(u)(dd^c u_1)^{n_1} \wedge (dd^c u_2)^{n_2}$.

CASE III: For this and the next case assume that $h \in C((-\infty, 0], \mathbb{R})$ and let

$$M = \sup\{|u_1(z_1)| + |u_2(z_2)| : z_1 \in \Omega_1, z_2 \in \Omega_2\}.$$

Furthermore, we choose a sequence $[h_i]$, $h_i \in C_0^{\infty}((-\infty, 0), \mathbb{R})$ such that

$$\sup_{j\geq 1} \sup\{|h_j(t)|: t\in [-M,0]\} < +\infty,$$

and which converges uniformly to h for all compact sets of [-M, 0) as $j \to +\infty$. From Case II we now get that

(2.1)
$$\int_{\Omega} h_j(u)(dd^c u)^n = \int_{\Omega} h_j(u)(dd^c u_1)^{n_1} \wedge (dd^c u_2)^{n_2}.$$

This case is finished by letting $j \to +\infty$ and using Lebesgue's dominated convergence theorem together with (2.1).

CASE IV: In general case, we choose a decreasing sequence $[h_j]$, h_j : $C((-\infty, 0], \mathbb{R})$, that converges pointwise to h on [-M, 0] as $j \to +\infty$. By Case III we have that

$$\int_{\Omega} h_j(u) (dd^c u)^n = \int_{\Omega} h_j(u) (dd^c u_1)^{n_1} \wedge (dd^c u_2)^{n_2},$$

and this proof can be finished as Case III.

CASE V: It remains to show that $u = \max(u_1, u_2) \in \mathcal{E}_0(\Omega)$. This follows immediately from [17], but here we give a direct proof. Fix $z_0 \in \Omega_1$, and $w_0 \in \Omega_2$. Let g_1 , and g_2 , be the pluricomplex Green functions defined on Ω_1 , and Ω_2 , with poles in z_0 , and w_0 , respectively. It follows from [11] and Proposition 3.4 in [19] that $\max(g_1, g_2, -1) \in \mathcal{E}_0(\Omega)$. Define

$$u_1^j = \max(u_1, j \max(g_1, -1)), \quad u_2^j = \max(u_2, j \max(g_2, -1)), \quad \text{and} \quad u_2^j = \max(u_1^j, u_2^j).$$

Then $\max(u_1^j, u_2^j) \ge j \max(g_1, g_2, -1) \in \mathcal{E}_0(\Omega)$ and we have proved in Case III that

$$\int_{\Omega_1 \times \Omega_2} (dd^c u^j)^{n_1 + n_2} = \int_{\Omega_1} (dd^c u_1^j)^{n_1} \int_{\Omega_2} (dd^c u_2^j)^{n_2} \le \int_{\Omega_1} (dd^c u_1)^{n_1} \int_{\Omega_2} (dd^c u_2)^{n_2},$$

and since $[u^j]$ decreases pointwise to u as $j \to +\infty$, it follows that $u \in \mathcal{E}_0(\Omega)$.

In Corollary 2.1, we show how our main theorem yields Wiklund's product property for \mathcal{F} . The result in Corollary 2.1 was first obtained in [17].

Corollary 2.1. Assume that $\Omega_1 \subset \mathbb{C}^{n_1}$, $n_1 \geq 1$, and $\Omega_2 \subset \mathbb{C}^{n_2}$, $n_2 \geq 1$, are two bounded hyperconvex domains, and let $u_1 \in \mathcal{F}(\Omega_1)$, $u_2 \in \mathcal{F}(\Omega_2)$. If $u(z_1, z_2) = \max(u_1(z_1), u_2(z_2))$, then $u \in \mathcal{F}(\Omega_1 \times \Omega_2)$, and

$$\int_{\Omega_1 \times \Omega_2} (dd^c u)^{n_1 + n_2} = \int_{\Omega_1} (dd^c u_1)^{n_1} \int_{\Omega_2} (dd^c u_2)^{n_2}.$$

Furthermore, if $u_1 \in \mathcal{E}(\Omega_1)$, $u_2 \in \mathcal{E}(\Omega_2)$ then $u(z_1, z_2) = \max(u_1(z_1), u_2(z_2)) \in \mathcal{E}(\Omega_1 \times \Omega_2)$.

Proof. We set $\Omega = \Omega_1 \times \Omega_2$ and $n = n_1 + n_2$. From [8] it follows that there exist two decreasing sequences $[u_1^j]$, $u_1^j \in \mathcal{E}_0(\Omega_1) \cap C^{\infty}(\Omega_1)$, and $[u_2^j]$, $u_2^j \in \mathcal{E}_0(\Omega_2) \cap C^{\infty}(\Omega_2)$, that converge pointwise to u_1 and u_2 , respectively, as $j \to +\infty$. An application of the main theorem gives the first two statements. The third statement now follows from the second, since every function in \mathcal{E} is locally equal to a function in \mathcal{F} .

Corollary 2.2. Assume that $\Omega_1 \subset \mathbb{C}^{n_1}$, $n_1 \geq 1$, and $\Omega_2 \subset \mathbb{C}^{n_2}$, $n_2 \geq 1$, are two bounded hyperconvex domains, and let $u_1 \in \mathcal{E}_0(\Omega_1)$, $u_2 \in \mathcal{E}_0(\Omega_2)$. If $u(z_1, z_2) = \max(u_1(z_1), u_2(z_2))$, then

$$\int_{\Omega_1 \times \Omega_2} h(u) (dd^c u)^{n_1 + n_2} = \int_{\Omega_1 \times \Omega_2} h(u) (dd^c u_1)^{n_1} \wedge (dd^c u_2)^{n_2},$$

for all decreasing functions $h: (-\infty, 0) \to [0, +\infty)$.

Proof. Let $\Omega = \Omega_1 \times \Omega_2$, $n = n_1 + n_2$, and

$$M = \sup\{|u_1(z_1)| + |u_2(z_2)| : z_1 \in \Omega_1, z_2 \in \Omega_2\}.$$

Let $[h_j]$, h_j : $C((-\infty, 0], \mathbb{R})$, be a sequence that converges pointwise to h, as $j \to +\infty$, and

$$\sup_{j\geq 1}\sup\{|h_j(t)|\colon t\in[-M,\,0)\}<+\infty.$$

By our main theorem we have that

$$\int_{\Omega} h_j(u)(dd^c u)^n = \int_{\Omega} h_j(u)(dd^c u_1)^{n_1} \wedge (dd^c u_2)^{n_2}.$$

Let $j \to +\infty$, then Lebesgue's dominated convergence theorem completes this proof.

3. Some applications

Corollary 3.1. Assume that $\Omega_1 \subset \mathbb{C}^{n_1}$, $n_1 \geq 1$, and $\Omega_2 \subset \mathbb{C}^{n_2}$, $n_2 \geq 1$, are two bounded hyperconvex domains, and let $u_1 \in \mathcal{E}_{p_1}(\Omega_1)$, $u_2 \in \mathcal{E}_{p_2}(\Omega_2)$. If $u(z_1, z_2) = \max(u_1(z_1), u_2(z_2))$, then $u \in \mathcal{E}_{p_1+p_2}(\Omega_1 \times \Omega_2)$, and

$$e_{p_1+p_2}(u) \leq e_{p_1}(u_1)e_{p_2}(u_2).$$

Proof. Set $\Omega = \Omega_1 \times \Omega_2$, $n = n_1 + n_2$ and $p = p_1 + p_2$. By Lemma 2.1 in [10] we can find two decreases sequences $[u_1^j]$, $u_1^j \in \mathcal{E}_0(\Omega_1)$, and $[u_2^j]$, $u_2^j \in \mathcal{E}_0(\Omega_2)$, that converge pointwise to u_1 and u_2 , respectively, as $j \to +\infty$. Furthermore, we have that $[(dd^c u_1^j)^{n_1}]$ and $[(dd^c u_2^j)^{n_2}]$ are increasing sequences that converge weakly to $(dd^c u_1)^{n_1}$ and $(dd^c u_2)^{n_2}$, as $j \to +\infty$. Let $[u^j]$ be the decreasing sequence that is defined by $u^j = \max(u_1^j, u_2^j) \in \mathcal{E}_0(\Omega)$. This construction yields that $[u^j]$ converges pointwise to $u = \max(u_1, u_2)$. Using the main theorem with $h(t) = (-t)^p$, and Fubini's theorem we have that

$$\begin{split} e_{p}(u) &\leq \underline{\lim}_{j \to +\infty} e_{p}(u^{j}) = \underline{\lim}_{j \to +\infty} \int_{\Omega} h(u^{j}) (dd^{c}u^{j})^{n} \\ &= \underline{\lim}_{j \to +\infty} \int_{\Omega} h(u^{j}) (dd^{c}u^{j}_{1})^{n_{1}} \wedge (dd^{c}u^{j}_{2})^{n_{2}} \\ &\leq \underline{\lim}_{j \to +\infty} \int_{\Omega} (-u^{j}_{1})^{p_{1}} (-u^{j}_{2})^{p_{2}} (dd^{c}u^{j}_{1})^{n_{1}} \wedge (dd^{c}u^{j}_{2})^{n_{2}} \leq \underline{\lim}_{j \to \infty} e_{p_{1}}(u^{j}_{1}) e_{p_{2}}(u^{j}_{2}) \\ &= e_{p_{1}}(u_{1}) e_{p_{2}}(u_{2}). \end{split}$$

We will need the following lemma in Example 3.3.

Lemma 3.2. Let $0 \le p \le q$. Then

$$\mathcal{E}_p(\Omega) \cap \mathcal{E}_q(\Omega) \subset \mathcal{E}_t(\Omega)$$
 for all $p \leq t \leq q$.

Proof. For $0 \le p \le q$ choose $0 \le \alpha \le 1$ such that $t = \alpha p + (1 - \alpha)q$. By Hölder's inequality we have that for each $v \in \mathcal{E}_0(\Omega)$ it holds that

$$\int_{\Omega} (-v)^t (dd^c v)^n = \int_{\Omega} (-v)^{\alpha p + (1-\alpha)q} (dd^c v)^n$$

$$\leq \left(\int_{\Omega} (-v)^p (dd^c v)^n \right)^{\alpha} \left(\int_{\Omega} (-v)^q (dd^c v)^n \right)^{1-\alpha}.$$

Hence,

$$(3.1) e_t(v) \le e_p(v)^{\alpha} e_q(v)^{1-\alpha}.$$

Now let $u \in \mathcal{E}_p(\Omega) \cap \mathcal{E}_q(\Omega)$. Lemma 2.1 in [10] implies that there exists a decreasing sequence $[u_j]$, $u_j \in \mathcal{E}_0$, that converges pointwise to u as $j \to +\infty$,

$$\lim_{j \to +\infty} e_p(u_j) = e_p(u), \quad \text{and} \quad \lim_{j \to +\infty} e_q(u_j) = e_q(u).$$

Inequality (3.1) yields that

$$\sup_{j} e_t(u_j) \le \sup_{j} e_p(u_j)^{\alpha} e_q(u_j)^{1-\alpha} \le e_p(u)^{\alpha} e_q(u)^{1-\alpha}.$$

Thus, $u \in \mathcal{E}_t$ with $e_t(u) \leq e_p(u)^{\alpha} e_q(u)^{1-\alpha}$.

EXAMPLE 3.3. Assume that $\Omega_1 \subset \mathbb{C}^{n_1}$, $n_1 \geq 1$, and $\Omega_2 \subset \mathbb{C}^{n_2}$, $n_2 \geq 1$, are two bounded hyperconvex domains. In this example we show that there exist functions $u_1 \in \mathcal{E}_{p_1}(\Omega_1)$, and $u_2 \in \mathcal{E}_{p_2}(\Omega_2)$ such that

$$u(z_1, z_2) = \max(u_1(z_1), u_2(z_2)) \notin \bigcup_{q \ge 0/q \ne p_1 + p_2} \mathcal{E}_q(\Omega_1 \times \Omega_2).$$

PART I: In this part we prove that for given q>0 with $q\neq p_1+p_2$, there exist functions $u_1\in\mathcal{E}_{p_1}(\Omega_1),\ u_2\in\mathcal{E}_{p_2}(\Omega_2)$ such that $u(z_1,z_2)=\max(u_1(z_1),u_2(z_2))\notin\mathcal{E}_q(\Omega_1\times\Omega_2)$. Let $g_1(z_1)=g_{\Omega_1}(z_1,a_1)$, and $g_2(z_2)=g_{\Omega_2}(z_2,a_2)$ be the pluricomplex Green function defined on Ω_k with pole at $a_k\in\Omega_k,\ k=1,2$. Let also $p_1,\ p_2>0$.

CASE I: Assume that $q > p_1 + p_2$, and let $q_1 > p_1$, $q_2 > p_2$ be such that $q = q_1 + q_2$. For each $j \in \mathbb{N}$ set

$$v_1^j = \max(j^{-q_1/n_1}g_1, -j), \quad v_2^j = \max(j^{-q_2/n_2}g_2, -j), \quad \text{and} \quad v^j = \max(v_1^j, v_2^j).$$

We have that

$$\lim_{j \to +\infty} e_{p_1}(v_1^j) = \lim_{j \to +\infty} (2\pi)^{n_1} j^{p_1 - q_1} = 0,$$

and

$$\lim_{i \to +\infty} e_{p_2}(v_2^j) = \lim_{i \to +\infty} (2\pi)^{n_2} j^{p_2 - q_2} = 0.$$

Therefore by Lemma 2.5 in [3] we can choose subsequences of $[v_1^j]$, $[v_2^j]$, to get that

(3.2)
$$u_1 = \left(\sum_{j=1}^{+\infty} v_1^j\right) \in \mathcal{E}_{p_1}(\Omega_1), \quad \text{and} \quad u_2 = \left(\sum_{j=1}^{+\infty} v_2^j\right) \in \mathcal{E}_{p_2}(\Omega_2).$$

Since there is no risk of ambiguity we also call these subsequences $[v_1^j]$, $[v_2^j]$. Corollary 2.1, and Lemma 4.1 imply that $e_q(v^j) = (2\pi)^{n_1+n_2}$. Hence,

$$e_q\left(\sum_{j=1}^k v^j\right) \ge \sum_{j=1}^k e_q(v^j) = (2\pi)^{n_1 + n_2} k.$$

Thus, $\sum_{j=1}^{+\infty} v^j \notin \mathcal{E}_q(\Omega_1 \times \Omega_2)$. On the other hand, we have for u_1 , u_2 defined in (3.2) that $u = u(z_1, z_2) = \max(u_1(z_1), u_2(z_2)) \le \sum_{j=1}^{+\infty} v^j$, which implies that $u \notin \mathcal{E}_q(\Omega_1 \times \Omega_2)$. Case II: Assume that $q < p_1 + p_2$, and let $q_1 < p_1$, $q_2 < p_2$ be such that $q = q_1 + q_2$. For each $j \in \mathbb{N}$ set

$$v_1^j = \max\left(j^{q_1/n_1}g_1, -\frac{1}{j}\right), \quad v_2^j = \max\left(j^{q_2/n_2}g_2, -\frac{1}{j}\right), \quad \text{and} \quad v^j = \max(v_1^j, v_2^j).$$

Then it is proved in a similar manner as in Case I that

$$u = u(z_1, z_2) = \max(u_1(z_1), u_2(z_2)) \notin \mathcal{E}_q(\Omega_1 \times \Omega_2).$$

PART II: By using Part I we shall complete this example. Set $q_j = p + (-1)^j/j$. For each $j \in \mathbb{N}$ Part I ensures the existence of functions $u_1^j \in \mathcal{E}_{p_1}(\Omega_1)$, $u_2^j \in \mathcal{E}_{p_2}(\Omega_2)$, with

$$u^j = \max(u_1^j, u_2^j) \notin \mathcal{E}_{q_j}(\Omega_1 \times \Omega_2).$$

Choose a positive sequence $\{\varepsilon_i\}$ of real numbers such that

$$u_1 = \left(\sum_{j=1}^{+\infty} \varepsilon_j u_1^j\right) \in \mathcal{E}_{p_1}(\Omega_1),$$

and

$$u_2 = \left(\sum_{j=1}^{+\infty} \varepsilon_j u_2^j\right) \in \mathcal{E}_{p_2}(\Omega_2).$$

Set $u = \max(u_1, u_2)$. Then Corollary 3.1 yields that $u \in \mathcal{E}_{p_1+p_2}(\Omega_1 \times \Omega_2)$. Furthermore, our construction implies that

$$u \le \varepsilon_j \max(u_1^j, u_2^j) = \varepsilon_j u^j,$$

and

$$u^j \notin \mathcal{E}_{q_j}(\Omega)$$
.

Hence, $u \notin \mathcal{E}_{q_j}(\Omega_1 \times \Omega_2)$ for all $j \in \mathbb{N}$. For the argument of contradiction, assume that $u \notin \mathcal{E}_q(\Omega_1 \times \Omega_2)$ for some $q \neq p$. Without loss of generality assume that q > p. From Lemma 3.2 it now follows that $u \in \mathcal{E}_t(\Omega_1 \times \Omega_2)$ for all $p \leq t \leq q$. Fix $j_0 > 0$ such that $p < q_{j_0} < q$. Then $u \in \mathcal{E}_{q_{j_0}}$, and a contradiction is obtained, and this example is completed.

In [13] (see also [4]), Guedj and Zeriahi introduced the following formalism: For an increasing function $\chi: (-\infty, 0] \to (-\infty, 0]$, they say that a plurisubharmonic function u is in $\mathcal{E}_{\chi}(\Omega)$ if there exists a decreasing sequence $[u_j]$, $u_j \in \mathcal{E}_0$, that converges pointwise to u on Ω , as j tends to $+\infty$, and

$$\sup_{j\geq 1}\int_{\Omega}-\chi(u_j)(dd^cu_j)^n<+\infty.$$

For example, if $\chi(t) = -(-t)^p$, then $\mathcal{E}_{\chi} = \mathcal{E}_p$, and if χ is bounded with $\chi(0) \neq 0$, then $\mathcal{E}_{\chi} = \mathcal{F}$. In general, we do not have that \mathcal{E}_{χ} is contained in \mathcal{E} . Another consequence of our main is Corollary 3.4.

Corollary 3.4. Assume that $\Omega_1 \subset \mathbb{C}^{n_1}$, $n_1 \geq 1$, and $\Omega_2 \subset \mathbb{C}^{n_2}$, $n_2 \geq 1$, are two bounded hyperconvex domains. Let $\chi_1, \chi_2 \colon (-\infty, 0] \to (-\infty, 0]$ be increasing functions, $u_1 \in \mathcal{E}_{\chi_1}(\Omega_1)$, and $u_2 \in \mathcal{E}_{\chi_2}(\Omega_2)$. If $u(z_1, z_2) = \max(u_1(z_1), u_2(z_2))$, then $u \in \mathcal{E}_{-\chi_1\chi_2}(\Omega_1 \times \Omega_2)$.

Proof. Let $\Omega = \Omega_1 \times \Omega_2$, $n = n_1 + n_2$, and let $[u_1^j]$, $[u_2^j]$ be sequences as in the proof of Corollary 2.1. Set $u^j = \max(u_1^j, u_2^j)$. From Corollary 2.2 with $h = \chi_1 \chi_2$, and Fubini's theorem it follows that

$$\begin{split} \overline{\lim}_{j \to \infty} \int_{\Omega} \chi_{1}(u^{j}) \chi_{2}(u^{j}) (dd^{c}u^{j})^{n} &= \overline{\lim}_{j \to \infty} \int_{\Omega} \chi_{1}(u^{j}) \chi_{2}(u^{j}) (dd^{c}u_{1}^{j})^{n_{1}} \wedge (dd^{c}u_{2}^{j})^{n_{2}} \\ &\leq \overline{\lim}_{j \to \infty} \int_{\Omega} \chi_{1}(u_{1}^{j}) \chi_{2}(u_{2}^{j}) (dd^{c}u_{1}^{j})^{n_{1}} \wedge (dd^{c}u_{2}^{j})^{n_{2}} \\ &\leq \overline{\lim}_{j \to \infty} \int_{\Omega_{1}} \chi_{1}(u_{1}^{j}) (dd^{c}u_{1}^{j})^{n_{1}} \int_{\Omega_{2}} \chi_{2}(u_{2}^{j}) (dd^{c}u_{2}^{j})^{n_{2}} < +\infty. \end{split}$$

Hence $u \in \mathcal{E}_{-\chi_1 \chi_2}(\Omega_1 \times \Omega_2)$.

4. The connection between $\max(u_1, u_2)$ and $(dd^c u_1)^{n_1} \wedge (dd^c u_2)^{n_2}$

Proposition 4.1. Assume that $\Omega \subset \mathbb{C}^n$, $n \geq 1$, is a bounded hyperconvex domain, and let $u_1, u_2 \in \mathcal{E}(\Omega)$. If $u = \max(u_1, u_2)$ and $(dd^c u_1)^{n_1} \wedge (dd^c u_2)^{n_2}$ vanishes on pluripolar sets, then

$$(4.1) (dd^c u)^{n_1 + n_2} \ge \chi_{[u_1 = u_2]} (dd^c u_1)^{n_1} \wedge (dd^c u_2)^{n_2},$$

where $\chi_{\{u_1=u_2\}}$ is the characteristic function for the set $\{u_1=u_2\}$ in Ω .

Proof. Without loss of generality we can assume that $u_1, u_2 < 0$. Let $[\alpha_j], 0 < \alpha_j < 1$, be an increasing sequence of real number that converges to 1, as $j \to +\infty$. By in [16] we have that

$$(dd^{c} \max(\alpha_{j}u_{1}, u_{2}))^{n_{1}} \wedge (dd^{c} \max(u_{1}, \alpha_{j}u_{2}))^{n_{2}}$$

$$\geq \chi_{\{\alpha_{j}u_{1}>u_{2}\}\cap\{u_{1}<\alpha_{j}u_{2}\}} (dd^{c}\alpha_{j}u_{1})^{n_{1}} \wedge (dd^{c}\alpha_{j}u_{2})^{n_{2}}$$

$$\geq \alpha_{j}^{n_{1}+n_{2}} \chi_{\{u_{1}=u_{2}\}} (dd^{c}u_{1})^{n_{1}} \wedge (dd^{c}u_{2})^{n_{2}}.$$

Let $j \to +\infty$, then (4.1) is obtained.

Corollary 4.2. Assume that $\Omega \subset \mathbb{C}^n$, $n \geq 1$, and let $u_1, u_2 \in \mathcal{F}(\Omega)$ be such that

$$\int_{\{u_1\neq u_2\}} (dd^c u_1)^{n_1} \wedge (dd^c u_2)^{n_2} = 0,$$

and $(dd^c u_1)^{n_1} \wedge (dd^c u_2)^{n_2}$ vanishes on pluripolar sets. If $u = \max(u_1, u_2)$, then $(dd^c u)^{n_1+n_2} = (dd^c u_1)^{n_1} \wedge (dd^c u_2)^{n_2}$.

Proof. Note that

$$\int_{\Omega} (dd^c u)^{n_1+n_2} \leq \int_{\Omega} (dd^c u_1)^{n_1} \wedge (dd^c u_2)^{n_2}.$$

Corollary 4.3. Assume that $\Omega_1 \subset \mathbb{C}^{n_1}$, $n_1 \geq 1$, and $\Omega_2 \subset \mathbb{C}^{n_2}$, $n_2 \geq 1$, are two bounded hyperconvex domains, $u_1 \in \mathcal{F}(\Omega_1)$, $u_2 \in \mathcal{F}(\Omega_2)$, and $u_1, u_2 \in \mathcal{E}(\Omega_1 \times \Omega_2)$ be such that $(dd^cu_1)^{n_1} \wedge (dd^cu_2)^{n_2}$ vanishes on pluripolar sets. Set $u(z_1, z_2) = \max(u_1(z_1), u_2(z_2))$. Then $(dd^cu)^{n_1+n_2} = (dd^cu)^{n_1} \wedge (dd^cu)^{n_2}$ if, and only if,

$$\int_{\{u_1\neq u_2\}} (dd^c u_1)^{n_1} \wedge (dd^c u_2)^{n_2} = 0.$$

Proof. If $(dd^c u)^{n_1+n_2} = (dd^c u_1)^{n_1} \wedge (dd^c u_2)^{n_2}$, then we have $\int_{\{u_1 \neq u_2\}} (dd^c u_1)^{n_1} \wedge (dd^c u_2)^{n_2} = 0$. On the other hand, we have by Proposition 4.1 that

$$(dd^c u)^n \ge \chi_{\{u_1=u_2\}} (dd^c u_1)^{n_1} \wedge (dd^c u_2)^{n_2}$$

and, by Corollary 2.1, $\int (dd^c u_1)^{n_1} \wedge (dd^c u_2)^{n_2} = \int (dd^c u)^n$. Therefore, if

$$\int_{\{u_1\neq u_2\}} (dd^c u_1)^{n_1} \wedge (dd^c u_2)^{n_2} = 0,$$

then it follows that $(dd^c u)^{n_1+n_2} = (dd^c u_1)^{n_1} \wedge (dd^c u_2)^{n_2}$.

REMARK. The case when u_1 and u_2 are positive plurisubharmonic functions with

$$\int_{\{u_1>0\}} (dd^c u_1)^{n_1} = \int_{\{u_2>0\}} (dd^c u_2)^{n_2} = 0,$$

was proved in [5].

EXAMPLE 4.4. Let $u_1 = \max((1/2)\ln|z_1|, \ln|z_2|)$, and $u_2 = 2u_1$, then $(dd^c u_1)^n = (dd^c \max(u_1, u_2))^n = (1/2)\delta_0$. But $dd^c u_1 \wedge dd^c u_2 = \delta_0$. This shows that the condition: $(dd^c u_1)^{n_1} \wedge (dd^c u_2)^{n_2}$ vanishes on pluripolar sets, is necessary in Proposition 4.1.

Let $u \in \mathcal{E}$, then by Theorem 5.11 in [7] there exist functions $\phi_u \in \mathcal{E}_0$ and $f_u \in L^1_{loc}((dd^c\phi_u)^n)$, $f_u \geq 0$ such that $(dd^cu)^n = f_u(dd^c\phi_u)^n + \beta_u$. The non-negative measure β_u is such that there exists a pluripolar set $A \subseteq \Omega$ such that $\beta_u(\Omega \setminus A) = 0$. We shall use the notation that $\alpha_u = f_u(dd^c\phi_u)^n$ and β_u refereing to the decomposition discussed here.

Theorem 4.5. Assume that $\Omega_1 \subset \mathbb{C}^{n_1}$, $n_1 \geq 1$, and $\Omega_2 \subset \mathbb{C}^{n_2}$, $n_2 \geq 1$, are two bounded hyperconvex domains, and let $u_1 \in \mathcal{E}(\Omega_1)$, $u_2 \in \mathcal{E}(\Omega_2)$. If $u(z_1, z_2) = \max(u_1(z_1), u_2(z_2))$, then

$$\beta_u = \beta_{u_1} \otimes \beta_{u_2}$$
.

Proof. Set $n = n_1 + n_2$. Assume first that if $\alpha_{u_j} = 0$, j = 1, 2. If we apply Corollary 4.3 to $\max(u_j, m)$, j = 1, 2 and let m tend to $-\infty$ we get that

$$(4.2) (dd^c u)^n = (dd^c \max(u_1, u_2))^{n_1 + n_2} = (dd^c u_1)^{n_1} \otimes (dd^c u_2)^{n_2}.$$

For the general case we can without loss of generality assume that $u_1 \in \mathcal{F}(\Omega_1)$, $u_2 \in \mathcal{F}(\Omega_2)$. From [7] and Theorem 1 in [18] (or [1]), it follows that we can find functions such that for j = 1, 2 satisfies the following properties:

- $\varphi_i \in \mathcal{F}(\Omega_i), \ v_i \in \mathcal{F}(\Omega_i),$
- $(dd^c\varphi_i)^n$ vanishes on pluripolar sets,
- $(dd^c \varphi_i)^n = \alpha_{u_i}, (dd^c v_i)^n = \beta_{u_i},$
- $\varphi_i \ge u_i$, $v_i \ge u_i$, and $u_i \ge \varphi_i + v_i$.

We now have that

$$\max(v_1, v_2) + \max(\varphi_1, v_2) + \max(v_1, \varphi_2) + \max(\varphi_1, \varphi_2) \le \max(u_1, u_2) \le \max(v_1, v_2).$$

By [7] every function $\varphi \in \mathcal{F}$ with $(dd^c \varphi)^n$ vanishing on all pluripolar sets can be minorized by the sum of a bounded function and a function with arbitrarily small Monge–Ampère mass. Using Corollary 2.1 we thus find that the following measures vanish on pluripolar sets:

$$(dd^c \max(\varphi_1, \nu_2))^{n_1+n_1}, (dd^c \max(\nu_1, \varphi_2))^{n_1+n_2}, (dd^c \max(\varphi_1, \varphi_2))^{n_1+n_2}.$$

Hence (4.2) and Lemma 4.11 in [1] concludes this proof since then

$$\beta_u = \beta_{\max(u_1, u_2)} = \beta_{\max(v_1, v_2)} = \beta_{v_1} \otimes \beta_{v_2} = \beta_{u_1} \otimes \beta_{u_2}.$$

EXAMPLE 4.6. If $\varphi \in \mathcal{PSH}(\Omega) \cap L^{\infty}_{loc}(\Omega)$, then

$$\int_{K} (-\psi)(dd^{c}\varphi)^{n} < +\infty \quad \text{for all} \quad K \subseteq \Omega, \ \psi \in \mathcal{PSH}(\Omega), \ \psi \leq 0.$$

The following example shows that there exists a function $\varphi \in \mathcal{E}_0(\mathbb{D}^2)$, such that

$$\int_{\mathbb{D}^2} (-\ln|z_1|) (dd^c \varphi)^2 = +\infty.$$

Set

$$\varphi(z) = \sum_{j=1}^{+\infty} \max\left(\frac{\ln|z_1|}{j^6}, j^2 \ln|z_2|, -\frac{1}{j^2}\right),\,$$

then by Corollary 4.3 we have that

$$\left(dd^c \max\left(\frac{\ln|z_1|}{j^6}, j^2 \ln|z_2|, -\frac{1}{j^2}\right)\right)^2 = \frac{1}{j^4} d\sigma_{\{\ln|z_1| = -j^4\}} \otimes d\sigma_{\{\ln|z_2|x = -1/j^4\}}.$$

Lemma 2.5 in [9] implies that $\varphi \in \mathcal{E}_0(\mathbb{D}^2)$. Furthermore, it holds that

$$(dd^c \varphi)^2 \geq \sum_{i=1}^{+\infty} \frac{1}{j^4} d\sigma_{\{\ln|z_1|=-j^4\}} \otimes d\sigma_{\{\ln|z_2|=-1/j^4\}},$$

and therefore

$$\begin{split} &\int_{\mathbb{D}^2} (-\ln|z_1|) (dd^c \varphi)^2 \\ &\geq \sum_{j=1}^{+\infty} \frac{1}{j^4} \int_{\mathbb{D}^2} (-\ln|z_1|) \, d\sigma_{\{\ln|z_1|=-j^4\}} \otimes d\sigma_{\{\ln|z_2|=-1/j^4\}} = \sum_{j=1}^{+\infty} \frac{1}{j^4} j^4 = +\infty. \end{split}$$

References

- P. Åhag, U. Cegrell, R. Czyż and H.H. Pham: Monge-Ampère measures on pluripolar sets, J. Math. Pures Appl. 92 (2009), 613–627.
- [2] P. Åhag, U. Cegrell, S. Kołodziej, H.H. Pham and A. Zeriahi: Partial pluricomplex energy and integrability exponents of plurisubharmonic functions, Adv. Math. 222 (2009), 2036–2058.

- [3] P. Åhag, R. Czyż and H.H. Phạm: Concerning the energy class \mathcal{E}_p for 0 , Ann. Polon. Math.**91**(2007), 119–130.
- [4] S. Benelkourchi, V. Guedj and A. Zeriahi: Plurisubharmonic functions with weak singularities, Acta Universitatis Upsaliensis 86, Proceedings of the conference in honour of C. Kiselman ("Kiselmanfest", Uppsala, 2006), 57–74.
- [5] Z. Błocki: Equilibrium measure of a product subset of Cⁿ, Proc. Amer. Math. Soc. 128 (2000), 3595–3599.
- [6] U. Cegrell: *Pluricomplex energy*, Acta Math. **180** (1998), 187–217.
- [7] U. Cegrell: The general definition of the complex Monge-Ampère operator, Ann. Inst. Fourier (Grenoble) 54 (2004), 159–179.
- [8] U. Cegrell: Approximation of plurisubharmonic function in hyperconvex domains, Acta Universitatis Upsaliensis 86, Proceedings of the conference in honour of C. Kiselman ("Kiselmanfest", Uppsala, 2006), 125–129.
- [9] U. Cegrell and J. Wiklund: A Monge–Ampère norm for delta-plurisubharmonic functions, Math. Scand. 97 (2005), 201–216.
- [10] U. Cegrell, S. Kolodziej and A. Zeriahi: Subextension of plurisubharmonic functions with weak singularities, Math. Z. 250 (2005), 7–22.
- [11] S.S. Chern, H.I. Levine and L. Nirenberg: Intrinsic norms on a complex manifold; in Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 119–139, 1969.
- [12] J. Diller, R. Dujardin and V. Guedj: Dynamics of meromorphic maps with small topological degree II: Energy and invariant measure, Commentarii Math. Helvet. (in press).
- [13] V. Guedj and A. Zeriahi: The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007), 442–482.
- [14] M. Klimek: Pluripotential Theory, Oxford Univ. Press, New York, 1991.
- [15] S. Kołodziej: The Complex Monge-Ampère Equation and Pluripotential Theory, Mem. Amer. Math. Soc. 178, 2005.
- [16] V.K. Nuayễn and H.H. Pham: A comparison principle for the complex Monge–Ampère operator in Cegrell's classes and applications, Trans. Amer. Math. Soc. 361 (2009), 5539–5554.
- [17] J. Wiklund: Topics in pluripotential theory, Ph.D. thesis, Umeå university, 2004.
- [18] Y. Xing: A decomposition of complex Monge–Ampère measures, Ann. Polon. Math. 92 (2007), 191–195.
- [19] A. Zeriahi: Fonction de Green pluricomplexe à pôle à l'infini sur un espace de Stein parabolique et applications, Math. Scand. 69 (1991), 89–126.

Per Åhag Department of Natural Sciences, Engineering and Mathematics Mid Sweden University

SE-871 88 Härnösand

Sweden

e-mail: Per.Ahag@miun.se

Urban Cegrell
Department of Mathematics and Mathematical Statistics
Umeå University
SE-901 87 Umeå
Sweden

e-mail: Urban.Cegrell@math.umu.se

Phạm Hoàng Hiệp Department of Mathematics Trường Đại học Sư phạm Hà Nội 136 Xuân Thuý, Cầu Giãy, Hà Nội Vietnam

e-mail: phhiep_vn@yahoo.com