Kodai Mathematical Seminar Reports

Fixed point theorem for amenable semigroup of nonexpansive mappings

Wataru Takahashi

Full-text: Open access

Article information

Source
Kodai Math. Sem. Rep., Volume 21, Number 4 (1969), 383-386.

Dates
First available in Project Euclid: 1 February 2006

Permanent link to this document
https://projecteuclid.org/euclid.kmj/1138845984

Digital Object Identifier
doi:10.2996/kmj/1138845984

Mathematical Reviews number (MathSciNet)
MR0262896

Zentralblatt MATH identifier
0197.11805

Subjects
Primary: 47.85

Citation

Takahashi, Wataru. Fixed point theorem for amenable semigroup of nonexpansive mappings. Kodai Math. Sem. Rep. 21 (1969), no. 4, 383--386. doi:10.2996/kmj/1138845984. https://projecteuclid.org/euclid.kmj/1138845984


Export citation

References

  • [1] DAY, M. M., Amenable semigroup. Illinois J. Math. 1 (1957), 509-544.
  • [2] DAY, M. M., Fixed point theorem for compact convex sets. Illinois J. Math. (1961), 585-590.
  • [3] DEMARR, R., Common fixed points for commuting contraction mappings. Pacifi J. Math. 13 (1963), 1139-1141.
  • [4] DUNFORD, N., AND J. T. SCHWARTZ, Linear operators, Part 1. Interscience, Ne York (1958).
  • [5] KAKUTANI, S., TWOfixedpoint theorems concerning bicompact convex set. Proc Japan Acad. 14 (1938), 242-245, [6] KIJIMA, Y., AND W. TAKAHASHI, A fixed point theorem for nonexpansive mappings in metric space. Kdai Math. Sem. Rep. 21 (1969), 326-330.
  • [7] MARKOV, A. A., Quelques theorems sur les ensembles abelens. C. R. (Doklady Acad. Sci. URSS (N. S. ) 1 (1936), 311-313.
  • [8] TAKAHASHI, W., A convexity in metric space and nonexpansive mappings. T appear.