Banach Journal of Mathematical Analysis

Bessel multipliers in Hilbert $C^\ast$--modules

Amir Khosravi and Morteza Mirzaee Azandaryani

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


In this paper we introduce Bessel multipliers, g-Bessel multipliers and Bessel fusion multipliers in Hilbert $C^\ast$--modules and we show that they share many useful properties with their corresponding notions in Hilbert and Banach spaces. We show that various properties of multipliers are closely related to their symbols and Bessel sequences, especially we consider multipliers when their Bessel sequences are modular Riesz bases and we see that in this case multipliers can be composed and inverted. We also study bounded below multipliers and generalize some of the results obtained for fusion frames in Hilbert spaces to Hilbert $C^\ast$--modules.

Article information

Banach J. Math. Anal., Volume 9, Number 3 (2015), 153-163.

First available in Project Euclid: 19 December 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 42C15: General harmonic expansions, frames
Secondary: 46H25: Normed modules and Banach modules, topological modules (if not placed in 13-XX or 16-XX) 47A05: General (adjoints, conjugates, products, inverses, domains, ranges, etc.)

Hilbert $C^\ast$--module Bessel sequence Bessel multiplier modular Riesz basis


Khosravi, Amir; Mirzaee Azandaryani, Morteza. Bessel multipliers in Hilbert $C^\ast$--modules. Banach J. Math. Anal. 9 (2015), no. 3, 153--163. doi:10.15352/bjma/09-3-11.

Export citation


  • L. Arambasic, Frames of submodules for countably generated Hilbert $K(H)$–modules, Glas. Mat. Ser. III. 41 (2006), 317–328.
  • L. Arambasic, On frames for countably generated Hilbert $C^\ast$–modules, Proc. Amer. Math. Soc. 135 (2007), 469–478.
  • M.L. Arias and M. Pacheco, Bessel fusion multipliers, J. Math. Anal. Appl. 348 (2008), no. 2, 581–588.
  • P. Balazs, Basic definition and properties of Bessel multipliers, J. Math. Anal. Appl. 325 (2007), no. 1, 571–585.
  • P. Balazs, Hilbert Schmidt operators and frames classification, approximation by multipliers and algorithms, Int. J. Wavelets Multiresolut. Inf. Process. 6 (2008), no. 2, 315–330.
  • P. Balazs, J.P. Antoine and A. Grybos, Weighted and controlled frames, Mutual Relationship and first Numerical Properties, Int. J. Wavelets Multiresolut. Inf. Process. 8 (2010), no. 1, 109–132.
  • P. Casazza and G. Kutyniok, Frames of subspaces, Contemp. Math. 345 (2004), 87–113.
  • I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), 1271–1283.
  • R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341–366.
  • M. Frank and D.R. Larson, Frames in Hilbert $C^\ast$–modules and $C^\ast$–algebras, J. Operator Theory. 48 (2002), 273–314.
  • P. Gavruta, On the duality of fusion frames, J. Math. Anal. Appl. 333 (2007), 871–879.
  • D. Han, W. Jing, D. Larson and R. Mohapatra, Riesz bases and their dual modular frames in Hilbert $C^\ast$–modules, J. Math. Anal. Appl. 343 (2008), 246–256.
  • A. Khosravi and B. Khosravi, Fusion frames and g-frames in Hilbert $C^*$–modules, Int. J. Wavelets Multiresolut. Inf. Process. 6 (2008), 433–446.
  • A. Khosravi and B. Khosravi, G-frames and modular Riesz bases, Int. J. Wavelets Multiresolut. Inf. Process. 10 (2012), no. 2, 1250013, 12 pp.
  • E.C. Lance, Hilbert $C^\ast$–modules: a Toolkit for Operator Algebraists, Cambridge University Press, Cambridge, 1995.
  • A. Rahimi, Multipliers of generalized frames in Hilbert spaces, Bull. Iranian Math. Soc. 37 (2011), no. 1, 63–80.
  • A. Rahimi and P. Balazs, Multipliers for $p$-Bessel sequences in Banach spaces, Integral Equations Operator Theory. 68 (2010), no. 2, 193–205.
  • W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322 (2006), 437–452.
  • X. Xiao and X. Zeng, Some properties of g-frames in Hilbert $C^\ast$–modules, J. Math. Anal. Appl. 363 (2010), 399–408.