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BESSEL MULTIPLIERS IN HILBERT C∗–MODULES
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Communicated by D. Bakić

Abstract. In this paper we introduce Bessel multipliers, g-Bessel multipliers
and Bessel fusion multipliers in Hilbert C∗–modules and we show that they
share many useful properties with their corresponding notions in Hilbert and
Banach spaces. We show that various properties of multipliers are closely
related to their symbols and Bessel sequences, especially we consider multipliers
when their Bessel sequences are modular Riesz bases and we see that in this
case multipliers can be composed and inverted. We also study bounded below
multipliers and generalize some of the results obtained for fusion frames in
Hilbert spaces to Hilbert C∗–modules.

1. Introduction

Frames for Hilbert spaces were first introduced by Duffin and Schaeffer [9] in
1952 to study some problems in nonharmonic Fourier series, reintroduced in 1986
by Daubechies, Grossmann and Meyer [8]. Fusion frames [7] and g-frames [18]
are important generalizations of frames.

Hilbert C∗–modules are generalizations of Hilbert spaces by allowing the inner
product to take values in a C∗–algebra rather than in the field of complex num-
bers. In [10] Frank and Larson presented a general approach to the frame theory
in Hilbert C∗–modules. Also, the first author and B. Khosravi introduced fusion
frames and g-frames in Hilbert C∗–modules (see [13]).

Bessel multipliers in Hilbert spaces were introduced by Balazs in [4]. Bessel
multipliers are operators that are defined by a fixed multiplication pattern which
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is inserted between the analysis and synthesis operators. Bessel multipliers have
useful applications, for example in [5] they are used for solving approximation
problems. Bessel fusion multipliers and g-Bessel multipliers in Hilbert spaces
were introduced in [3] and [16], respectively. Also multipliers were introduced
for p-Bessel sequences in Banach spaces (see [17]). In this paper we generalize
these notions to Hilbert C∗–modules. First in the following section, we have a
brief review of the definitions and basic properties of frames, fusion frames and
g-frames in Hilbert C∗–modules.

2. Frames, fusion frames and g-frames in Hilbert C∗–modules

Suppose that A is a unital C∗–algebra and E is a left A–module such that the
linear structures of A and E are compatible. E is a pre-Hilbert A–module if E
is equipped with an A–valued inner product 〈., .〉 : E × E −→ A, such that

(i) 〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉, for each α, β ∈ C and x, y, z ∈ E;
(ii) 〈ax, y〉 = a〈x, y〉, for each a ∈ A and x, y ∈ E;
(iii) 〈x, y〉 = 〈y, x〉∗, for each x, y ∈ E;
(iv) 〈x, x〉 ≥ 0, for each x ∈ E and if 〈x, x〉 = 0, then x = 0.

For each x ∈ E, we define ‖x‖ = ‖〈x, x〉‖ 1
2 and |x| = 〈x, x〉 1

2 . If E is complete
with ‖.‖, it is called a Hilbert A–module or a Hilbert C∗–module over A. We call
Z(A) = {a ∈ A : ab = ba, ∀b ∈ A}, the center of A. Note that if a ∈ Z(A), then
a∗ ∈ Z(A), and if a is an invertible element of Z(A), then a−1 ∈ Z(A), also if a

is a positive element of Z(A), since a
1
2 is in the closure of the set of polynomials

in a, we have a
1
2 ∈ Z(A). Let E and F be Hilbert A–modules. An operator

T : E −→ F is called adjointable if there exists an operator T ∗ : F −→ E
such that 〈T (x), y〉 = 〈x, T ∗(y)〉, for each x ∈ E and y ∈ F . Every adjointable
operator T is bounded and A–linear (that is, T (ax) = aT (x) for each x ∈ E
and a ∈ A). We denote the set of all adjointable operators from E into F by
L(E, F ). Note that L(E, E) is a C∗–algebra and it is denoted by L(E). For a
unital C∗–algebra A, `2(I, A) which is defined by

`2(I, A) =

{
{ai}i∈I ⊆ A :

∑
i∈I

aiai
∗converges in ‖.‖

}
,

is a Hilbert A–module with inner product 〈{ai}i∈I , {bi}i∈I〉 =
∑

i∈I aib
∗
i .

As usual `∞(I, A) is the set

{
{ai}i∈I ⊆ A : sup{‖ai‖ : i ∈ I} < ∞

}
, and C0(I, A)

is the set of all {ai}i∈I ⊆ A with this property that for each ε > 0 there exists a
finite set K ⊆ I with sup{‖ai‖ : i ∈ I −K} ≤ ε.
Let E and F be Hilbert A–modules. For each x ∈ E, y ∈ F , the operator θx,y :
F −→ E is defined by θx,y(z) = 〈z, y〉x. It is easy to check that θx,y ∈ L(F, E),
with (θx,y)

∗ = θy,x. We say that an operator T ∈ L(F, E) is compact if it is in
the closed linear subspace of L(F, E) spanned by {θx,y : x ∈ E, y ∈ F}.
A Hilbert A–module E is finitely generated if there exists a finite set {x1, . . . , xn} ⊆
E such that every element x ∈ E can be expressed as an A–linear combination
x =

∑n
i=1 aixi, ai ∈ A. A Hilbert A–module E is countably generated if there
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exists a countable set {xi}i∈I ⊆ E such that E equals the norm-closure of the
A–linear hull of {xi}i∈I . For more details about Hilbert C∗–modules, see [15].

Let E be a Hilbert A–module. A family {fi}i∈I ⊆ E is a frame for E, if there
exist real constants 0 < A ≤ B < ∞, such that for each x ∈ E,

A〈x, x〉 ≤
∑
i∈I

〈x, fi〉〈fi, x〉 ≤ B〈x, x〉. (2.1)

The numbers A and B are called the lower and upper bound of the frame, re-
spectively. In this case we call it an (A, B) frame. If only the second inequality
is required, we call it a Bessel sequence. If the sum in (2.1) converges in norm,
the frame is called standard.
For a standard Bessel sequence F = {fi}i∈I with an upper bound B, the operator
TF : E −→ `2(I, A) which is defined by TF(x) = {〈x, fi〉}i∈I is called the analysis

operator of F . It is adjointable with T ∗
F({ai}i∈I) =

∑
i∈I aifi and ‖TF‖ ≤

√
B.

T ∗
F is the synthesis operator of F . Now we define the operator SF : E −→ E

by SF(x) = T ∗
FTF(x) =

∑
i∈I〈x, fi〉fi. If F is a standard (A, B) frame, then

A.IdE ≤ SF ≤ B.IdE. The operator SF is called the frame operator of F . Let
F = {fi}i∈I and G = {gi}i∈I be standard Bessel sequences in E. Then we say
that G is an alternate dual or a dual of F , if x =

∑
i∈I〈x, fi〉gi or equivalently

x =
∑

i∈I〈x, gi〉fi, for each x ∈ E (see [12, Proposition 3.8]).

It is easy to see that if F is an (A, B) standard frame, then F̃ = {S−1
F fi}i∈I is an

( 1
B

, 1
A
) standard frame with x =

∑
i∈I〈x, S−1

F fi〉fi =
∑

i∈I〈x, fi〉S−1
F fi, for each

x ∈ E. Hence F̃ = {S−1
F fi}i∈I is a dual of F called the canonical dual of F .

Note that a closed submodule M of E is orthogonally complemented if E =
M ⊕M⊥. In this case πM ∈ L(E, M), where πM : E −→ M is the orthogonal
projection onto M. Now we recall some definitions from [13].

Suppose that {ωi : i ∈ I} ⊆ A is a family of weights, i.e., each ωi is a positive,
invertible element from the center of A, and {Wi : i ∈ I} is a family of orthog-
onally complemented submodules of E. Then {(Wi, ωi)}i∈I is a fusion frame if
there exist real constants 0 < A ≤ B < ∞ such that

A〈x, x〉 ≤
∑
i∈I

ω2
i 〈πWi

(x), πWi
(x)〉 ≤ B〈x, x〉,

for each x ∈ E. In this case we call it an (A, B) fusion frame. If we only require
to have the upper bound, then {(Wi, ωi)}i∈I is called a Bessel fusion sequence
with upper bound B.
Note that if {Ei : i ∈ I} is a sequence of Hilbert A–modules, then ⊕i∈IEi which is

the set
{
{xi}i∈I : xi ∈ Ei, {〈xi, xi〉

1
2}i∈I ∈ `2(I,A)

}
, is a Hilbert A–module with

pointwise operations and A-valued inner product 〈{xi}i∈I , {yi}i∈I〉 =
∑

i∈I〈xi, yi〉.
A sequence Λ = {Λi ∈ L(E, Ei) : i ∈ I} is called a g-frame for E with respect

to {Ei : i ∈ I} if there exist real constants A, B > 0 such that

A〈x, x〉 ≤
∑
i∈I

〈Λix, Λix〉 ≤ B〈x, x〉,
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for each x ∈ E. In this case we call it an (A, B) g-frame. If only the second-hand
inequality is required, then Λ is called a g-Bessel sequence. Note that standard
fusion frames and g-frames are defined similar to the standard frames. For a
standard g-Bessel sequence Λ, the operator TΛ : E −→ ⊕i∈IEi which is defined
by TΛ(x) = {Λix}i∈I is called the analysis operator of Λ. TΛ is adjointable
with T ∗

Λ({xi}i∈I) =
∑

i∈I Λ∗
i (xi), for each {xi}i∈I ∈ ⊕i∈IEi. Now we define the

operator SΛ : E −→ E by SΛx = T ∗
ΛTΛ(x) =

∑
i∈I Λ∗

i Λi(x). If Λ is a standard
(A, B) g-frame, then A.IdE ≤ SΛ ≤ B.IdE. The operator SΛ is called the g-
frame operator of Λ. For more results about frames, fusion frames and g-frames
in Hilbert C∗–modules, see [10, 1, 2, 13, 19].

In this paper all C∗–algebras are unital and all Hilbert C∗–modules are finitely
or countably generated. All frames, fusion frames, g-frames and Bessel sequences
are standard.

3. Bessel multipliers, G-Bessel multipliers and Bessel fusion
multipliers

In this section, we introduce Bessel multipliers, g-Bessel multipliers and Bessel
fusion multipliers in Hilbert C∗–modules and we get some of their basic prop-
erties. We also generalize some of the results obtained for Bessel multipliers in
Hilbert and Banach spaces to Hilbert C∗–modules. We begin with the following
proposition:

Proposition 3.1. Let m = {mi}i∈I ∈ `∞(I,A) with mi ∈ Z(A), for each i ∈ I.
Then the operator Mm defined on ⊕i∈IEi by Mm({xi}i∈I) = {mixi}i∈I is well-
defined, adjointable with M∗

m = Mm∗ and ‖Mm‖ ≤ ‖m‖∞, where m∗ = {m∗
i }i∈I .

Proof. Let {xi}i∈I ∈ ⊕i∈IEi. Then

0 ≤ 〈mixi, mixi〉 = 〈xi, xi〉
1
2 mim

∗
i 〈xi, xi〉

1
2 ≤ ‖m‖2

∞〈xi, xi〉,

for each i ∈ I. Thus for each finite subset K ⊆ I, we have∑
i∈K

〈mixi, mixi〉 =
∑
i∈K

〈xi, xi〉
1
2 mim

∗
i 〈xi, xi〉

1
2 ≤ ‖m‖2

∞

∑
i∈K

〈xi, xi〉.

Hence
∑

i∈I〈mixi, mixi〉 converges in norm and∥∥∥∥∑
i∈I

〈mixi, mixi〉
∥∥∥∥ 1

2

≤ ‖m‖∞
∥∥∥∥∑

i∈I

〈xi, xi〉
∥∥∥∥ 1

2

.

Therefore Mm is a well-defined and bounded operator with ‖Mm‖ ≤ ‖m‖∞.
Similarly we can see that {m∗

i xi}i∈I ∈ ⊕i∈IEi and the operatorMm∗ : ⊕i∈IEi −→
⊕i∈IEi which is defined byMm∗({xi}i∈I) = {m∗

i xi}i∈I is well-defined and bounded.
Now for each x = {xi}i∈I , y = {yi}i∈I ∈ ⊕i∈IEi, we have

〈Mmx, y〉 =
∑
i∈I

mi〈xi, yi〉 =
∑
i∈I

〈xi, m
∗
i yi〉 = 〈x,Mm∗y〉,

so M∗
m = Mm∗ . �
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In this note m is always a sequence {mi}i∈I ∈ `∞(I, A) with mi ∈ Z(A), for
each i ∈ I. Each sequence with these properties is called a symbol. We denote
the set of all symbols by N(I, A) which is a C∗–subalgebra of `∞(I, A).
Note that a unital C∗–algebra A is a Hilbert A–module with the inner product
〈a, b〉 = ab∗, so if Ei = A, for each i ∈ I, then ⊕i∈IEi = `2(I, A). Hence in this
case Mm is an adjointable operator on `2(I, A).

Definition 3.2. Let E1 and E2 be Hilbert A-modules, and let F = {fi}i∈I ⊆ E1

and G = {gi}i∈I ⊆ E2 be standard Bessel sequences. We call the operator
Mm,G,F : E1 −→ E2 which is defined by Mm,G,F = T ∗

GMmTF , the Bessel mul-
tiplier for the Bessel sequences F and G. It is easy to see that Mm,G,F(x) =∑

i∈I mi〈x, fi〉gi. We denote Mm,F ,F by Mm,F .

The following theorem is a generalization of parts (1), (2), (3) of Theorem 6.1
in [4], part (1)(a) of Theorem 8.1 in [4] and Lemmas 3.1, 3.6 and Theorem 3.7 in
[17] to Hilbert C∗–modules.

Theorem 3.3. (i) Mm,G,F ∈ L(E1, E2) and M∗
m,G,F = Mm∗,F ,G. Also

‖Mm,G,F‖ ≤
√

BD‖m‖∞, where B and D are the upper bounds of F and
G, respectively.

(ii) If m ∈ C0(I, A), then Mm,G,F is a compact operator.
(iii) If {m(`)}` ⊆ N(I, A) and m(`) −→ m, then ‖Mm(`),G,F −Mm,G,F‖ −→ 0.

Proof. (i) From Proposition 3.1, it is clear that Mm,G,F ∈ L(E1, E2), and M∗
m,G,F =

T ∗
FMm∗TG = Mm∗,F ,G, also we have ‖Mm,G,F‖ ≤ ‖T ∗

G‖‖Mm‖‖TF‖ ≤
√

BD‖m‖∞.
(ii) For each x ∈ E1 and i ∈ I, we have

θgi,m∗
i fi

(x) = 〈x, m∗
i fi〉gi = mi〈x, fi〉gi,

so Mm,G,F(x) =
∑

i∈I θgi,m∗
i fi

(x). Let ε > 0. Then there exists a finite set K ⊆ I
such that ‖{mi}i∈I−K‖∞ ≤ ε√

BD
. Therefore∥∥∥∥Mm,G,F(x)−

∑
i∈K

θgi,m∗
i fi

(x)

∥∥∥∥ ≤ ‖{mi}i∈I−K‖∞
√

BD‖x‖ ≤ ε‖x‖.

This means that Mm,G,F is a compact operator.
(iii) We have

‖Mm,G,F −Mm(`),G,F‖ = ‖T ∗
G(Mm −Mm(`))TF‖ ≤

√
BD‖m(`) −m‖∞ −→ 0,

and the result follows. �

Corollary 3.4. Let F = {fi}i∈I be a Bessel sequence for E. If mi = m∗
i (resp.

mi ≥ 0), for each i ∈ I , then Mm,F is a self-adjoint (resp. positive) operator.

Proof. If mi = m∗
i , for each i ∈ I, then by the above theorem M∗

m,F = Mm∗,F =
Mm,F . Hence Mm,F is self-adjoint. Now let mi ≥ 0, for each i ∈ I. Since mi ≥ 0,
we have 〈x, fi〉mi〈fi, x〉 = 〈x, fi〉mi〈x, fi〉∗ ≥ 0, for each i ∈ I and x ∈ E. Thus

〈x, Mm,Fx〉 =
〈
x,

∑
i∈I

mi〈x, fi〉fi

〉
=

∑
i∈I

〈x, fi〉mi〈fi, x〉 ≥ 0,

and the result follows from Lemma 4.1 in [15]. �
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Recall from Example 3.2 in [13] that if W = {(Wi, ωi)}i∈I is a standard Bessel
fusion sequence (resp. standard fusion frame) for E, then ΛW = {ωiπWi

}i∈I is
a standard g-Bessel sequence (resp. standard g-frame) for E with respect to
{Wi}i∈I .

Definition 3.5. Let Λ = {Λi}i∈I and Γ = {Γi}i∈I be standard g-Bessel sequences
for E with respect to {Ei}i∈I . Then the operator Mm,Γ,Λ : E −→ E which
is defined by Mm,Γ,Λ = T ∗

ΓMmTΛ is called the g-Bessel multiplier for the g-
Bessel sequences Λ and Γ. We have Mm,Γ,Λ(x) =

∑
i∈I miΓ

∗
i Λi(x). Also if W =

{(Wi, ωi)}i∈I and V = {(Vi, υi)}i∈I are standard Bessel fusion sequences for E, we
call the operator Mm,V,W (x) = Mm,ΛV ,ΛW

(x) =
∑

i∈I miυiωiπVi
πWi

(x), the Bessel
fusion multiplier for W and V .

Similar to the proof of Theorem 3.3, we can see that Mm,Γ,Λ ∈ L(E), M∗
m,Γ,Λ =

Mm∗,Λ,Γ and ‖Mm,Γ,Λ‖ ≤ ‖m‖∞
√

BD, where B and D are upper bounds of Λ
and Γ, respectively. Also, we have Mm,V,W ∈ L(E), M∗

m,V,W = Mm∗,W,V and

‖Mm,V,W‖ ≤ ‖m‖∞
√

BD, where B and D are upper bounds of W and V , respec-
tively. We denote Mm,Λ,Λ by Mm,Λ and if mi = 1A, for each i ∈ I, then Mm,V,W

is denoted by MV W .

Remark 3.6. Let m = {mi}i∈I be a symbol and let F = {fi}i∈I ,G = {gi}i∈I ⊆ E
be standard Bessel sequences. It was shown in Example 3.2 in [13] that if Λi, Γi :
E −→ A are defined by Λi(x) = 〈x, fi〉, Γi(x) = 〈x, gi〉, then Λ = {Λi}i∈I and
Γ = {Γi}i∈I are standard g-Bessel sequences. Now we have

Mm,Γ,Λ(x) =
∑
i∈I

miΓ
∗
i Λi(x) =

∑
i∈I

mi〈x, fi〉gi = Mm,G,F(x).

Note that if a ∈ Z(A) and T ∈ L(E, F ), then the operator aT : E −→ F
which is defined by (aT )(x) = aT (x) is adjointable with (aT )∗ = a∗T ∗.
The following proposition and corollary are generalizations of Theorem 4.5 in [6]
to Hilbert C∗–modules:

Proposition 3.7. Suppose that m = {mi}i∈I is a symbol such that each mi is a
weight and there exists a positive number α with α1A ≤ mi, for each i ∈ I. Then
the following are equivalent:

(i) Λ = {Λi}i∈I is a standard g-frame.

(ii) {m
1
2
i Λi}i∈I is a standard g-frame.

(iii) Mm,Λ is a bounded, positive and invertible operator.

Proof. Since α1A ≤ mi ≤ ‖m‖∞1A, for each i ∈ I, we have

α〈Λi(x), Λi(x)〉 ≤ 〈m
1
2
i Λi(x), m

1
2
i Λi(x)〉 ≤ ‖m‖∞〈Λi(x), Λi(x)〉.

Therefore Λ is a standard g-frame if and only if {m
1
2
i Λi}i∈I is a standard g-frame.

Let {m
1
2
i Λi}i∈I be a standard g-frame. For each x ∈ E, we have∑

i∈I

(m
1
2
i Λi)

∗(m
1
2
i Λi)(x) =

∑
i∈I

miΛ
∗
i Λi(x) = Mm,Λ(x).
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This means that Mm,Λ is the g-frame operator of {m
1
2
i Λi}i∈I . Hence it is positive

and invertible, so (ii) =⇒ (iii). Note that (iii) =⇒ (ii) can be obtained from the
following inequality and Lemma 4.1 in [15],

‖M−1
m,Λ‖

−1IdE ≤ Mm,Λ ≤ ‖Mm,Λ‖IdE.

�

Since frames are special cases of g-frames, we have the following result:

Corollary 3.8. Suppose that m = {mi}i∈I is a symbol such that each mi is a
weight and there exists a positive number α with α1A ≤ mi, for each i ∈ I. Then
the following are equivalent:

(i) F = {fi}i∈I is a standard frame.

(ii) {m
1
2
i fi}i∈I is a standard frame.

(iii) Mm,F is a bounded, positive and invertible operator.

Proposition 3.9. Let Λ and Γ be standard g-Bessel sequences.

(i) If Mm,Γ,Λ is bounded below, then Λ is a standard g-frame.
(ii) If there exists A > 0, such that A‖x‖2 ≤ ‖〈Mm,Γ,Λx, x〉‖, for each x ∈ E,

then Γ and Λ are standard g-frames.

Proof. (i) Suppose that R > 0 such that R‖x‖ < ‖Mm,Γ,Λx‖, for each nonzero
element x ∈ E and D is a Bessel bound for Γ. Now for each x ∈ E, we can
choose some y ∈ E with ‖y‖ = 1 and R‖x‖ ≤ ‖〈Mm,Γ,Λx, y〉‖. Hence by using
the Cauchy-Schwarz inequality in Hilbert C∗–modules, we have

R‖x‖ ≤ ‖〈Mm,Γ,Λx, y〉‖ =

∥∥∥∥∑
i∈I

〈Λix, m∗
i Γiy〉

∥∥∥∥
≤

∥∥∥∥∑
i∈I

〈Λix, Λix〉
∥∥∥∥ 1

2
∥∥∥∥∑

i∈I

mim
∗
i 〈Γiy, Γiy〉

∥∥∥∥ 1
2

≤
√

D‖m‖∞
∥∥∥∥∑

i∈I

〈Λix, Λix〉
∥∥∥∥ 1

2

.

Therefore ‖
∑

i∈I〈Λix, Λix〉‖ ≥ R2

D‖m‖2∞
‖x‖2. Now by Theorem 3.1 in [19], Λ is a

standard g-frame.
(ii) For each x ∈ E, we have A‖x‖2 ≤ ‖〈Mm,Γ,Λx, x〉‖ ≤ ‖Mm,Γ,Λx‖‖x‖. Since
M∗

m,Γ,Λ = Mm∗,Λ,Γ, we can also obtain that A‖x‖2 ≤ ‖Mm∗,Λ,Γx‖‖x‖. Hence
Mm,Γ,Λ and Mm∗,Λ,Γ are bounded below. Therefore by part (i), Λ and Γ are
standard g-frames. �

Proposition 3.10. Let Λ and Γ be standard g-Bessel sequences.

(i) If there exist λ1 < 1, λ2 > −1 such that ‖x − Mm,Γ,Λx‖ ≤ λ1‖x‖ +
λ2‖Mm,Γ,Λx‖, for each x ∈ E, then Λ is a standard g-frame.

(ii) If there exists λ ∈ [0, 1) such that ‖x−Mm,Γ,Λx‖ ≤ λ‖x‖, for each x ∈ E,
then Λ and Γ are standard g-frames.
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Proof. (i) We have ‖x−Mm,Γ,Λx‖ ≥ ‖x‖ − ‖Mm,Γ,Λx‖. Hence

λ1‖x‖+ λ2‖Mm,Γ,Λx‖ ≥ ‖x‖ − ‖Mm,Γ,Λx‖,

so ‖Mm,Γ,Λx‖ ≥ 1−λ1

1+λ2
‖x‖. Now the result follows from Proposition 3.9.

(ii) We have

‖x−Mm∗,Λ,Γx‖ = ‖(IdE −Mm,Γ,Λ)∗x‖ ≤ ‖IdE −Mm,Γ,Λ‖‖x‖ ≤ λ‖x‖.
Therefore by using part (i), we obtain that Λ and Γ are standard g-frames. �

Now as a consequence of our results, we can obtain the generalizations of
Theorems 3.1, 3.4 and Corollary 3.5 in [11] to Hilbert C∗–modules.

Corollary 3.11. Let W = {(Wi, ωi)}i∈I and V = {(Vi, υi)}i∈I be standard Bessel
fusion sequences.

(i) If MV W is bounded below, then W is a standard fusion frame.
(ii) If there exist λ1 < 1 and λ2 > −1 such that

‖x−MV W x‖ ≤ λ1‖x‖+ λ2‖MV W x‖,
for each x ∈ E, then W is a standard fusion frame.

(iii) If there exists λ ∈ [0, 1) such that ‖x−MV W x‖ ≤ λ‖x‖, for each x ∈ E,
then V and W are standard fusion frames.

4. Modular Riesz bases and Bessel multipliers

Riesz bases and modular Riesz bases in Hilbert C∗–modules were introduced in
[10] and [14], respectively. In this section, we get some properties of multipliers
when the Bessel sequences are modular Riesz bases.

A standard frame {fi}i∈I for E is a modular Riesz basis if it has the following
property:
if an A-linear combination

∑
i∈K aifi with coefficients {ai : i ∈ K} ⊆ A and

K ⊆ I is equal to zero, then ai = 0, for each i ∈ K.

Lemma 4.1. Let F = {fi}i∈I ⊆ E be a modular Riesz basis. Then F and

F̃ = {f̃i}i∈I are biorthogonal, where f̃i = S−1
F fi.

Proof. Let i0 ∈ I. Then we have fi0 =
∑

i∈I〈fi0 , S
−1
F fi〉fi, so

∑
i∈I aifi = 0 where

ai = 〈fi0 , S
−1
F fi〉, for each i 6= i0 and ai0 = 〈fi0 , S

−1
F fi0〉−1A. Since F is a modular

Riesz basis, the equality
∑

i∈I aifi = 0 implies that 〈fi0 , S
−1
F fi〉 = 0, for every

i 6= i0 and 〈fi0 , S
−1
F fi0〉 = 1A. This means that F and F̃ are biorthogonal. �

The following result is analogous to Corollaries 7.3 and 7.6 in [4].

Proposition 4.2. (i) Suppose that F = {fi}i∈I , Ψ = {hi}i∈I are Bessel
sequences in E1 and G = {gi}i∈I , Φ = {ξi}i∈I are Bessel sequences in
E2. If Φ and G are biorthogonal, then Mm,F ,G ◦ Mm′,Φ,Ψ = Mm.m′,F ,Ψ =
Mm′.m,F ,Ψ, where m = {mi}i∈I and m′ = {m′

i}i∈I are symbols with m.m′ =
{mim

′
i}i∈I .

(ii) If F = {fi}i∈I is a modular Riesz basis, then Mm, eF ,F ◦Mm′, eF ,F = Mm′, eF ,F ◦
Mm, eF ,F = Mmm′, eF ,F .
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Proof. (i) For each x ∈ E1, we have

Mm,F ,G ◦Mm′,Φ,Ψ(x) = Mm,F ,G(
∑
k∈I

m′
k〈x, hk〉ξk)

=
∑
i∈I

∑
k∈I

mim
′
k〈x, hk〉〈ξk, gi〉fi =

∑
i∈I

mim
′
i〈x, hi〉fi

= Mm.m′,F ,Ψ(x) = Mm′.m,F ,Ψ(x).

(ii) We can obtain the result by using part (i) and the above lemma. �

Our next result is analogous to [4, Lemma 7.1, Propositions 7.2 and 7.7] and
[17, Propositions 3.3, 3.4 and 3.5].

Theorem 4.3. Let F = {fi}i∈I ⊆ E1 and G = {gi}i∈I ⊆ E2 be (A, B) and (C, D)
modular Riesz bases, respectively. Then

(i)
√

AC‖m‖∞ ≤ ‖Mm,G,F‖ ≤
√

BD‖m‖∞.
(ii) The mapping m −→ Mm,G,F from N(I, A) into L(E1, E2) is injective.
(iii) Let a be a positive, invertible element such that a ≤ |mi|, for each i ∈

I. Then Mm,G,F is invertible and M−1
m,G,F = Mm−1, eF ,eG, where m−1 =

{m−1
i }i∈I .

Proof. (i) By Lemma 4.1, G and G̃ are biorthogonal and since G̃ is an ( 1
D

, 1
C

)
frame, for each i0 ∈ I, we have

‖mi0‖2 = ‖mi0m
∗
i0
‖ =

∥∥∥∥∑
i∈I

〈mi0gi0 , g̃i〉〈g̃i, mi0gi0〉
∥∥∥∥ ≤ 1

C
‖mi0gi0‖2.

This means that supi∈I ‖migi‖ ≥
√

C‖m‖∞. Also since F̃ is an ( 1
B

, 1
A
) frame, we

obtain that ‖f̃i‖ ≤ 1√
A
, for each i ∈ I. Now we have

‖Mm,G,F‖ ≥ sup
i∈I

∥∥∥∥Mm,G,F(
f̃i

‖f̃i‖
)

∥∥∥∥ = sup
i∈I

‖
∑

k∈I mk〈f̃i, fk〉gk‖
‖f̃i‖

= sup
i∈I

‖migi‖
‖f̃i‖

≥
√

AC‖m‖∞.

The inequality ‖Mm,G,F‖ ≤ ‖m‖∞
√

BD follows from Theorem 3.3.
(ii) Let m′ = {m′

i}i∈I be a symbol and Mm,G,F = Mm′,G,F . Then for each i0 ∈ I,

we have
∑

i∈I mi〈f̃i0 , fi〉gi =
∑

i∈I m′
i〈f̃i0 , fi〉gi, so mi0gi0 = m′

i0
gi0 . Since G is a

modular Riesz basis, we obtain that mi0 = m′
i0
.

(iii) We have a ≤ |mi| ≤ ‖m‖∞.1A, so ‖m‖−1
∞ ≤ ‖|mi|−1‖ ≤ ‖a−1‖, for each i ∈ I.

Because mi ∈ Z(A) and |mi| is invertible, it is easy to obtain that mi is invertible
with |m−1

i | = |mi|−1. Therefore ‖m−1
i ‖ = ‖|m−1

i |‖ = ‖|mi|−1‖ ≤ ‖a−1‖, for each
i ∈ I. Thus m−1 = {m−1

i }i∈I ∈ `∞(I,A) and since m−1
i ∈ Z(A), for each i ∈ I,
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m−1 is a symbol. Now by using Lemma 4.1, for each x ∈ E1, we have

Mm−1, eF ,eG ◦Mm,G,F(x) = Mm−1, eF ,eG(
∑
k∈I

mk〈x, fk〉gk)

=
∑
i∈I

m−1
i 〈

∑
k∈I

mk〈x, fk〉gk, S
−1
G gi〉S−1

F fi

=
∑
i∈I

∑
k∈I

m−1
i mk〈x, fk〉〈gk, S

−1
G gi〉S−1

F fi

=
∑
i∈I

m−1
i mi〈x, fi〉S−1

F fi =
∑
i∈I

〈x, fi〉S−1
F fi = x.

Similarly we can get Mm,G,F ◦Mm−1, eF ,eG(y) = y, for each y ∈ E2, and the result
follows. �
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