Bernoulli

  • Bernoulli
  • Volume 12, Number 6 (2006), 1003-1017.

Strong consistency of the maximum likelihood estimator for finite mixtures of location-scale distributions when the scale parameters are exponentially small

Kentaro Tanaka and Akimichi Takemura

Full-text: Open access

Abstract

In a finite mixture of location--scale distributions the maximum likelihood estimator does not exist because of the unboundedness of the likelihood function when the scale parameter of some mixture component approaches zero. In order to study the strong consistency of the maximum likelihood estimator, we consider the case where the scale parameters of the component distributions are restricted from below by c n , where { c n} is a sequence of positive real numbers which tend to zero as the sample size n increases. We prove that under mild regularity conditions the maximum likelihood estimator is strongly consistent if the scale parameters are restricted from below by c n =exp(-n d) , 0 <d<1 .

Article information

Source
Bernoulli, Volume 12, Number 6 (2006), 1003-1017.

Dates
First available in Project Euclid: 4 December 2006

Permanent link to this document
https://projecteuclid.org/euclid.bj/1165269148

Digital Object Identifier
doi:10.3150/bj/1165269148

Mathematical Reviews number (MathSciNet)
MR2274853

Zentralblatt MATH identifier
1117.62025

Keywords
consistency maximum likelihood estimator mixture distribution

Citation

Tanaka, Kentaro; Takemura, Akimichi. Strong consistency of the maximum likelihood estimator for finite mixtures of location-scale distributions when the scale parameters are exponentially small. Bernoulli 12 (2006), no. 6, 1003--1017. doi:10.3150/bj/1165269148. https://projecteuclid.org/euclid.bj/1165269148


Export citation

References

  • [1] Billingsley, P. (1995) Probability and Measure, 3rd edn. New York: Wiley.
  • [2] Everitt, B.S. and Hand, D.J. (1981) Finite Mixture Distributions. London: Chapman & Hall.
  • [3] Geman, S. and Hwang, C.-R. (1982) Nonparametric maximum likelihood estimation by the method of sieves. Ann. Statist., 10, 401-414.
  • [4] Genovese, C.R. and Wasserman, L. (2000) Rates of convergence for the Gaussian mixture sieve. Ann. Statist., 28, 1105-1127.
  • [5] Ghosal. S. and van der Vaart, A.W. (2001) Entropies and rates of convergence for maximum likelihood and Bayes estimation for mixtures of normal densities. Ann. Statist., 29, 1233-1263.
  • [6] Grenander, U. (1981) Abstract Inference. New York: Wiley.
  • [7] Hathaway, R.J. (1985) A constrained formulation of maximum-likelihood estimation for normal mixture distributions. Ann. Statist., 13, 795-800.
  • [8] McLachlan, G.J. and Peel, D. (2000) Finite Mixture Models. New York: Wiley.
  • [9] Redner, R. (1981) Note on the consistency of the maximum likelihood estimate for nonidentifiable distributions. Ann. Statist., 9, 225-228.
  • [10] Tanaka, K. and Takemura, A. (2005) Strong consistency of MLE for finite uniform mixtures when the scale parameters are exponentially small. Ann. Inst. Statist. Math., 57, 1-19.
  • [11] Tanaka, K. and Takemura, A. (2006) Strong consistency of MLE for finite mixtures of location-scale distributions when the scale parameters are exponentially small. http://arXiv.org/abs/math.ST/0605148.
  • [12] Wald, A. (1949) Note on the consistency of the maximum likelihood estimate. Ann. Math. Statist., 20, 595-601.