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In a finite mixture of location–scale distributions the maximum likelihood estimator does not exist

because of the unboundedness of the likelihood function when the scale parameter of some mixture

component approaches zero. In order to study the strong consistency of the maximum likelihood

estimator, we consider the case where the scale parameters of the component distributions are

restricted from below by cn, where fcng is a sequence of positive real numbers which tend to zero as

the sample size n increases. We prove that under mild regularity conditions the maximum likelihood

estimator is strongly consistent if the scale parameters are restricted from below by cn ¼ exp(�nd),

0 , d , 1.
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1. Introduction

In some finite mixture distributions the maximum likelihood estimator (MLE) does not

exist. Let us consider the following example. Denote a normal mixture distribution with M

components and parameter Ł ¼ (Æ1, �1, � 2
1, . . . , ÆM , �M , � 2

M ) by

f (x; Ł) ¼
XM
m¼1

Æm�m(x; �m, �
2
m),

where the Æm (m ¼ 1, . . . , M) are non-negative real numbers that sum to one and the

�m(x; �m, � 2
m) are normal densities. Let x1, . . . , xn denote a random sample of size n > 2

from the density f (x; Ł0). In view of the identifiability problem of mixture distributions

discussed below, here Ł0 is a parameter value designating the true distribution. However, for
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simplicity we henceforth just say that Ł0 is the true parameter. If we set �1 ¼ x1, then the

likelihood tends to infinity as � 2
1 ! 0. Thus the MLE does not exist.

But when we restrict � m > c (m ¼ 1, . . . , M) by some positive real constant c, we can

avoid the divergence of the likelihood. Furthermore, in this situation, it can be shown that

the MLE is strongly consistent if the true parameter Ł0 is in the restricted parameter space.

On the other hand, the smaller � 2
1 is, the smaller the contribution �1(x; �1 ¼ x1, � 2

1)

makes to the likelihood at other observations x2, . . . , xn. Therefore an interesting question

here is whether we can decrease the bound c ¼ cn to zero with the sample size n and yet

guarantee the strong consistency of the MLE. If this is possible, a further question is how

fast cn can decrease to zero.

This question is similar to the (so far open) problem stated in Hathaway (1985), which

treats mixtures of normal distributions with constraints imposed on the ratios of variances,

while our restriction is imposed on the variances themselves. See also the discussion in

Section 3.8.1 of McLachlan and Peel (2000).

In the above example, the normality of the component distributions is not essential and

the same difficulty exists for finite mixtures of general location–scale distributions such as

mixtures of uniform distributions. Furthermore, in this paper we allow each component to

belong to different location–scale families. Let � m (m ¼ 1, . . . , M) denote the scale

parameters of the component distributions, and consider the restriction � m > cn
(m ¼ 1, . . . , M). Then a question of interest here is whether we can decrease the bound

cn to zero.

For the case of mixtures of uniform distributions, Tanaka and Takemura (2005) proved

that the MLE is strongly consistent if cn ¼ exp(�nd), 0 , d , 1. Here d can be arbitrarily

close to 1 but fixed. In this paper, we prove that the same result holds for general finite

mixtures of location–scale distributions under very mild regularity conditions (Assumptions

1–4 below). As discussed in Section 5, the normal density satisfies the regularity conditions

and our result implies that the MLE is strongly consistent for the finite normal mixture if

� m > cn ¼ exp(�nd), 0 , d , 1, m ¼ 1, . . . , M .

Our framework is closely related to the sieve method (Grenander 1981), in which an

objective function is maximized over a constrained subspace of the parameter space and

then this subspace is expanded to the whole parameter space as the sample size increases.

Some applications and consistency results for the method are given in Geman and Hwang

(1982). An MLE based on a sieve is called a sieve MLE. The convergence rates of sieve

MLEs for Gaussian mixture problems are studied in Genovese and Wasserman (2000) and

Ghosal and van der Vaart (2001), and their ideas are very interesting. They obtain the

convergence rates by bounding the Hellinger bracketing entropy of subsets of the function

space and assume that the corresponding subsets of the parameter space are compact so that

their bracketing entropy does not diverge. In the case of the sieve MLE, the approximating

subspaces are usually taken to be compact, whereas we treat a sequence of non-compact

subsets of the parameter space expanding to the whole parameter space as the sample size

increases. Therefore results on sieve MLEs are not directly applicable in our framework.

The paper is organized as follows. In Section 2 we summarize some preliminaries. In

Section 3 we state our main results (Theorems 1 and 2), giving their proofs in Section 4.

We conclude in Section 5 with some discussions.
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2. Preliminaries: strong consistency and identifiability of
mixture distributions

A mixture of M densities with parameter Ł ¼ (Æ1, �1, �1, . . . , ÆM , �M , �M ) is defined by

f (x; Ł) �
PM

m¼1Æm f m(x; �m, � m), where the Æm (m ¼ 1, . . . , M), called the mixing

weights, are non-negative real numbers that sum to one and the f m(x; �m, � m), called

the components of the mixture, are density functions. In this paper we consider the case

where the components are location–scale densities with location parameter �m 2 R and

scale parameter � m . 0, that is,

f m(x; �m, � m) ¼
1

� m

f m
x� �m

� m

; 0, 1

� �
: (1)

As mentioned above, we allow f m(x; �m, � m) to belong to different families. For example,

f 1(x; �1, �1) may be a normal density, f 2(x; �2, �2) may be a uniform density, and so on.

Let �m ¼ R3 (0, 1) denote the parameter space of the mth component (�m, � m) and let ¨
denote the entire parameter space:

¨ � (Æ1, . . . , ÆM ) 2 RM j
XM
m¼1

Æm ¼ 1, Æm > 0

( )
3
YM
m¼1

�m:

Let K be a subset of f1, 2, . . . , Mg and let jKj denote the number of elements in K.

Denote by ŁK a subvector of Ł 2 ¨ consisting of the components in K. Then the parameter

space of subprobability measures consisting of the components in K is

¨K � ŁK j Ł 2 ¨,
X
m2K

Æm < 1

( )
:

The corresponding density and the set of subprobability densities are denoted by

fK(x; ŁK) �
X
k2K

Æk f k(x; �k , � k), GK � f fK(x; ŁK) j ŁK 2 ¨Kg:

Furthermore, denote the set of subprobability densities with no more than K components by

GK �
[

jKj<K

GK (1 < K < M): (2)

We now briefly discuss identifiability of parameters. In mixture models, different

parameters may designate the same distribution. When the component densities belong to a

common location–scale family, we can permute the labels of the components and the

distribution remains the same. A mixture model of K � 1 components can be obtained by

setting one weight Æm ¼ 0 (with arbitrary �m and � m) in a model with K components.

These are trivial cases of unidentifiability of parameters. However, there are more

complicated cases. Let U (x; a, b) denote the uniform density on the interval [a, b]. Then,

for example, 1
3
U (x; �1, 1)þ 2

3
U (x; �2, 2) and 1

2
U (x; �2, 1)þ 1

2
U (x; �1, 2) represent the

same distribution (Everitt and Hand 1981). In this case the limiting behaviour of the MLE
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is not obvious, although the estimated density should be consistent. Therefore, we first give

a definition of consistency in terms of the estimated density.

Let f 0(x) ¼ f (x; Ł0) denote the true density and let f̂f n(x) ¼ f (x; Ł̂Łn) denote the estimated

density.

Definition 1. An estimator f̂f n is strongly consistent if

Prob lim
n!1

���� f̂f n � f 0
���� ¼ 0

� �
¼ 1,

where k � k is the L1-norm.

Although Definition 1 is conceptually simple, in order to prove the strong consistency of

the MLE we work with the location and scale parameters in (1) and the mixing weights. In

order to deal with the identifiability problem let us introduce a distance between two sets of

parameters. Let dist(Ł, Ł9) denote the ordinary Euclidean distance (or any other equivalent

distance) between two parameter vectors Ł, Ł9 2 ¨. For U, V � ¨ define

dist(U , V ) � infŁ2U infŁ92V dist(Ł, Ł9). For a parameter Ł, let

¨(Ł) � fŁ9 2 ¨ j f (x; Ł9) ¼ f (x; Ł) 8xg:

Then ¨0 ¼ ¨(Ł0) denotes the set of true parameters. Since our densities are continuous with

respect to Ł, by Scheffé’s theorem (Theorem 16.12 of Billingsley 1995) dist(¨(Ł̂Łn), ¨0) ! 0

implies k f̂f n � f 0k ! 0.

3. Main results

We assume the following regularity conditions for strong consistency of the MLE.

Assumption 1. There exist real constants v0, v1 . 0 and � . 1 such that

f m(x; �m ¼ 0, � m ¼ 1) < minfv0, v1 � jxj��g

for all m.

This assumption means that the f m (m ¼ 1, . . . , M) are bounded and that their tails decrease

to zero as fast as or faster than jxj��, which is a very mild condition.

The following three regularity conditions are standard conditions assumed in discussing

strong consistency of the MLE. Let ˆ denote any compact subset of ¨.

Assumption 2. For Ł 2 ¨ and any positive real number r, let

f (x; Ł, r) � sup
dist(Ł9,Ł)<r

f (x; Ł9):

For each Ł 2 ˆ and sufficiently small r, f (x; Ł, r) is measurable.
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Assumption 3. For each Ł 2 ˆ, if lim j!1 Ł( j) ¼ Ł (Ł( j) 2 ˆ) then lim j!1 f (x; Ł( j)) ¼ f (x; Ł)
except on a set which is a null set and does not depend on the sequence fŁ( j)g1j¼1.

Assumption 4. ð
jlog f (x; Ł0)j f (x; Ł0)dx , 1:

Let E0[�] denote the expectation under the true parameter Ł0. The following theorem is

essential to our argument as well as being of some independent interest.

Theorem 1. Suppose that Assumptions 1–4 are satisfied and f 0 2 GMnGM�1, where GM and

GM�1 are defined in (2). Then there exist real constants k, º . 0 such that

E0[logfg(x)þ kg]þ º , E0[log f (x; Ł0)] (3)

for all g 2 GM�1.

We now state the main theorem of this paper.

Theorem 2. Suppose that Assumptions 1–4 are satisfied and f 0 2 GMnGM�1, where GM and

GM�1 are defined in (2). Let c0 . 0 and 0 , d , 1. If cn ¼ c0 � exp(�nd) and

¨n � fŁ 2 ¨ j � m > cn, (m ¼ 1, . . . , M)g,

then

Prob lim
n!1

dist(¨(Ł̂Łn), ¨0) ¼ 0
� �

¼ 1,

where Ł̂Łn is an MLE restricted to ¨n.

As remarked at the end of the previous section, Theorem 2 implies the following

corollary.

Corollary 1. Under the assumptions of Theorem 2, f̂f n is strongly consistent in the sense of

Definition 1.

4. Proofs

In this section, we prove the theorems stated in Section 3. In Section 4.1 we state some

lemmas required for Theorems 1 and 2. Then, in Section 4.2 we prove Theorem 1, which is

also essential for Theorem 2. Finally, in Section 4.3 we prove Theorem 2. Our proofs are

basically along the same lines as in the case of finite mixtures of uniform distributions in

Tanaka and Takemura (2005). Therefore we omit the proofs of the lemmas. Full details of

our proofs can be found in the preprint version of this paper (Tanaka and Takemura 2006).
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4.1. Notation and some lemmas

Fix an arbitrary k0 . 0, which corresponds to k in Theorem 1. Define ~�� and �(y), y . 0, as

~�� � �� 1

�
, �(y) � v1

k0

� �1=�

y
~��, (4)

where v1 and � are given in Assumption 1. Noting that v1 � (�(y))�� ¼ k0=y, the following

lemma is easily proved.

Lemma 1. Under Assumption 1, for arbitrary k0 . 0 each component density f m(x; �, � ) is
bounded by a step function

f m(x; �, � ) < max 1[���(� ),�þ�(� ))(x) �
v0

�
, k0

n o
< 1[���(� ),�þ�(� ))(x) �

v0

�
þ k0,

where 1U (x) denotes the indicator function of U � R.

From Lemma 1,

XM
m¼1

Æm f m(x; �m, � m) <
XM
m¼1

1[�m��(� m),�mþ�(� m))(x) �
v0

� m

þ k0: (5)

The right-hand side of (5) is a step function. We look at this step function where the density

f (x; Ł) is high, that is, the scale parameter of some component is small.

For a given choice of k0 . 0, choose c0 . 0 such that

c0 ,
v0

k0(M þ 1)
:

Below we will impose additional constraints on k0 and c0 to make them sufficiently small to

satisfy other conditions. For each Ł, let

K�<c0 ¼ K�<c0 (Ł) � fm j 1 < m < M , � m < c0g

denote the set of components with � m < c0 and define

J (Ł) �
[

m2K�<c0

[�m � �(� m), �m þ �(� m)):

On J (Ł) the density f (x; Ł) is high. Now dividing J (Ł) according to the height of the step

function on the right-hand side of (5), for x 2 J (Ł) we can write the right-hand side of (5) as

1J (Ł)(x) �
XM
m¼1

1[�m��(� m),�mþ�(� m))(x) �
v0

� m

þ k0

( )
¼
XT (Ł)
t¼1

H(J t(Ł)) � 1J t(Ł)(x),

where J t(Ł) (t ¼ 1, . . . , T (Ł)) are disjoint intervals, [�m � �(� m), �m þ �(� m)) (m 2 K�<c0 )

are unions of some of the J t(Ł)s and the height H(J t(Ł)) for each t is defined by any

x 2 J t(Ł) as
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H(J t(Ł)) �
XM
m¼1

1[�m��(� m),�mþ�(� m))(x) �
v0

� m

þ k0:

For x 2 J t(Ł), there is at least one m ¼ mt such that x 2 [�m � �(� m), �m þ �(� m)) and

H(J t(Ł)) > v0=c0 þ k0. Also note that the total number T (Ł) of J t(Ł)s satisfies T (Ł) < 2M ,

because the change in the height can only occur at �m � �(� m) or �m þ �(� m).

By (5) we have the following lemma for x 2 J (Ł).

Lemma 2. Under Assumption 1, for each x 2 J (Ł),

XM
m¼1

Æm f m(x; �m, � m) <
XT (Ł)
t¼1

H(J t(Ł)) � 1J t(Ł)(x):

A density can be high only in a small region, and we want to have some explicit bound

on the length W (J t(Ł)) of J t(Ł) in terms of its height H(J t(Ł)). Let

v2 � 2
v1

k0

� �1=�

(v0 � (M þ 1))
~��, �(y) � v2 �

1

y

� �~��

, y . 0, (6)

where v0, v1 and � are given in Assumption 1 and ~�� is defined in (4).

Lemma 3. Under Assumption 1, the length W (J t(Ł)) of J t(Ł) for each t is bounded by

W (J t(Ł)) < v2 �
1

H(J t(Ł))

� �~��

¼ �(H(J t(Ł))):

So far we have been concerned with bounding the density at its peaks. Now we consider

bounding the tail of the true density f (x; Ł0). Write �0 � max(j�01j, . . . , j�0M j) and

Ł0 ¼ (Æ01, �01, �01, . . . , Æ0M , �0M , �0M ). Let

u0 � sup
x

f (x; Ł0), u1 � max u0 � (2�0)�, 2�v1
XM
m¼1

Æ0m�
��1
0m

 !
: (7)

Lemma 4. Under Assumption 1,

f (x; Ł0) < minfu0, u1 � jxj��g, 8x 2 R:

Based on Lemma 4, we can bound the behaviour of the minimum and the maximum of

the sample. Let x1, . . . , xn denote a random sample of size n from f (x; Ł0) and let

xn,1 � minfx1, . . . , xng, xn,n � maxfx1, . . . , xng. The following lemma follows from the

Borel–Cantelli lemma.

Lemma 5. For any real constant A0 . 0 and � . 0, define An � A0 � n(2þ�)=(��1). Then
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Prob(xn,1 , �An or xn,n . An infinitely often) ¼ 0:

Finally, we consider subprobability densities in GK. For any positive real number r, let

fK(x; ŁK, r) � sup
dist(Ł9K,ŁK)<r

fK(x; Ł9K) (Ł9K 2 ¨K):

The following lemma follows from the bounded convergence theorem.

Lemma 6. Let ˆK denote any compact subset of ¨K. For any real constant k > 0 and any

point ŁK 2 ˆK, the following equality holds under Assumptions 1 and 3:

lim
r!0

E0[logf fK(x; ŁK, r)þ kg] ¼ E0[logf fK(x; ŁK)þ kg]:

4.2. Proof of Theorem 1

In this section we prove Theorem 1 by contradiction. Fix an arbitrary proper subset L of

f1, . . . , Mg. It suffices to prove that (3) holds for all g 2 GL. Suppose that (3) does not

hold for some GL. Then for any º, k . 0, there exists g 2 GL such that

E0[logfg(x)þ kg]þ º > E0[log f (x; Ł0)]:

Here, let fº jg, fk jg be positive sequences which decrease to zero. Then for each º j, k j . 0,

there exists g j 2 GL such that E0[logfg j(x)þ k jg]þ º j > E0[log f (x; Ł0)]. It follows that

lim inf
j!1

E0[logfg j(x)þ k jg]þ º j > E0[log f (x; Ł0)]: (8)

Now g j can be written as g j(x) ¼ fL(x; Ł
( j)
L ). Then the following lemma holds by

compactification argument.

Lemma 7. There exist a subsequence of fŁ( j)L g1j¼1 � ffÆ( j)
m , �( j)m , � ( j)

m j m 2 Lgg1j¼1 and

disjoint subsets K� #0, K� "1, Kj�j"1 � L such that along the subsequence

� ( j)
m ! 0 for m 2 K� #0, � ( j)

m ! 1 for m 2 K� "1,

� ( j)
m converges to a finite value and j�( j)m j ! 1 for m 2 Kj�j"1,

(Æ( j)
m , �( j)m , � ( j)

m ) converges to a finite point (Æ(1)
m , �(1)

m , � (1)
m ) for m 2 KR,

where KR � LnfK� #0 [ K� "1 [ Kj�j"1g.

From Lemma 7, we define g1 as g1(x) �
P

m2KR
Æ(1)
m f m(x; �(1)

m , � (1)
m ) 2 GKR

. For

notational simplicity and without loss of generality, we replace the original sequence with

this subsequence, because (8) holds for this subsequence as well. Furthermore, by

considering the sequence fŁ( j)L g1j¼ j0
where j0 is sufficiently large and replacing j by j� j0 if

necessary, we can assume without loss of generality that there exist sufficiently small real

constants k0 . 0 and c0 . 0 such that
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E0[log f (x; Ł0)]� E0[logfg1(x)þ 3k0g] . 0, k0 ,
v0

c0(M þ 1)
,

� ( j)
m , c0 (m 2 K� #0), � ( j)

m .
v0

k0
(m 2 K� "1),

c0 < � ( j)
m <

v0

k0
(m 2 Kj�j"1), for all j: (9)

From Lemmas 1 and 2, we have

E0[logf fL(x; Ł( j)L )þ k jg þ º j]

<

ð
1
J (Ł( j)L )

(x) � log
XT (Ł( j)L )

t¼1

H(J t(Ł
( j)
L )) � 1

J t(Ł
( j)

L )
(x)þ k j

8<
:

9=
; f (x; Ł0)dx

þ
ð
1
RnJ (Ł( j)L )

(x) � log fK� .0(x; Ł
( j)
K� .0)þ k0 þ k j

n o
f (x; Ł0)dxþ º j, (10)

where K�.0 � LnK� #0.
Now we evaluate the first term on the right-hand side of (10). From Lemma 3,

ð
1
J (Ł( j)L )

(x) � log
XT (Ł( j)L )

t¼1

H(J t(Ł
( j)
L )) � 1

J t(Ł
( j)

L )
(x)þ k j

8<
:

9=
; f (x; Ł0)dx

<
XT(Ł( j)L )

t¼1

W (J t(Ł
( j)
L )) � log H(J t(Ł

( j)
L ))þ k j

n o
� u0 ! 0 (n ! 1), (11)

where u0 ¼ supx f (x; Ł0) defined in (7). Next we evaluate the second term on the right-

hand side of (10). Let A( j) � minm2Kj�j"1fminfj�( j)m þ �(� ( j)
m )j, j�( j)m � �(� ( j)

m )jgg. Then

fK� "1 (x; Ł
( j)
K� "1

)þ fKj�j"1(x; Ł
( j)
Kj�j"1

) < k0 for x 2 [�A( j), A( j)]nJ (Ł( j)). Therefore, the follow-

ing inequality holds:ð
1
RnJ (Ł( j)L )

(x) � logf fK�.0
(x; Ł( j)K�.0

)þ k0 þ k jg f (x; Ł0)dx

<

ð
1
[�A( j),A( j)]nJ (Ł( j)L )

(x) � log fKR
(x; Ł( j)KR

)þ 2k0 þ k j

n o
f (x; Ł0)dx

þ
ð
1
Rnf[�A( j),A( j)][J (Ł( j)L )g(x) � logf fK�.0

(x; Ł( j)K�.0
)þ k0 þ k jg f (x; Ł0)dx

� I
( j)
1 þ I

( j)
2 (12)

(say). By the bounded convergence theorem, we obtain
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I
( j)
1 !

ð
logfg1(x)þ 2k0g f (x; Ł0)dx, I

( j)
2 ! 0: (13)

From (10)–(13), we have

E0[log f (x; Ł0)] < lim sup
j!1

E0[logfg j(x)þ k jg]þ º j < E0[logfg1(x)þ 2k0g]:

This is a contradiction to (9). This completes the proof of Theorem 1.

4.3. Proof of Theorem 2

We choose real constants k and º to satisfy (3) by using Theorem 1. Having chosen these

constants, from now on we proceed along the lines of the proof in Tanaka and Takemura

(2005), although the details of the proof here are much more complicated. For the sake of

readability, we divide our proof into further sections.

4.3.1. Setting up constants

For k, º satisfying (3), let k0, º0 be real constants such that 0 , 4k0 < k, 0 , 4º0 < º.
Note that 4k0, 4º0 also satisfy (3). Define

B � v0

k0
. maxf�01, . . . , �0Mg:

If � m > B, then the density of the mth component is almost flat and makes little contribution

to the likelihood.

Because fcng is decreasing to zero, by replacing c0 by some cn if necessary, we can

assume without loss of generality that c0 is sufficiently small to satisfy the following

conditions,

v0

c0

� �~��

. e, c0 , minf�01, . . . , �0Mg, k0 ,
v0

c0(M þ 1)
,

3M � u0 � 2�(c0) � jlog k0j , º0, (14)

3 � 2M � u0 � �(v0=c0) � log(v0=c0) , º0,

where ~��, �(�) and �(�) are defined in (4) and (6).

For any subset V � R, let P0(V ) denote the probability of V under the true density

P0(V ) �
ð
V

f (x; Ł0)dx:

Let A0 . 0 be a positive constant which satisfies

P0(A0) � log
v0=c0 þ 2k0

3k0

� �
, º0, (15)
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where A0 � (�1, �A0] [ [A0, 1). Let An � A0 � n(2þ�)=(��1) as in Lemma 5. Define a

subset ¨9n of ¨n in Theorem 2 by

¨9n � fŁ 2 ¨n j 9m s:t: cn < � m < c0 or j�mj . A0g � ¨n:

4.3.2. Partitioning the parameter space

In view of theorems in Wald (1949) and Redner (1981), for the strong consistency of the

MLE on ¨n under Assumption 1–4, it suffices to prove that

lim
n!1

sup
Ł2¨9n

Yn
i¼1

f (xi; Ł)

Yn
i¼1

f (xi; Ł0)

¼ 0, almost everywhere (a:e:):

In our proof, we consider finer and finer finite coverings of ¨9n.

Let Ł 2 ¨9n. Let K�<c0 , K�>B, Kj�j>A0
represent disjoint subsets of f1, . . . , Mg and

define

KR � f1, . . . , MgnfK�<c0 [ K�>B [ Kj�j>A0
g:

For any given K�<c0 , K�>B, Kj�j>A0
, we define a subset of ¨9n by

¨9n,K � fŁ 2 ¨9n j � m < c0 (m 2 K�<c0 ); � m > B (m 2 K�>B);

c0 , � m , B, j�mj > A0 (m 2 Kj�j>A0
); c0 , � m , B, j�mj , A0 (m 2 KR)g:

As above, it suffices to prove that for each choice of disjoint subsets K�<c0 , K�>B, Kj�j>A0
,

the ratio of the supremum of the likelihood over ¨9n,K to the likelihood at Ł0 converges to

zero almost everywhere. We fix K�<c0 , K�>B, Kj�j>A0
, from now on.

Next we consider coverings of ¨KR
. The following lemma follows from Lemma 6 and

compactness of ¨KR
.

Lemma 8. Let B(Ł, r(Ł)) denote the open ball with centre Ł and radius r(Ł). Then ¨KR
can

be covered by a finite number of balls B(Ł(1)KR
, r(Ł(1)KR

)), . . . , B(Ł(S)KR
, r(Ł(S)KR

)) such that

E0[logf fKR
(x; Ł(s)KR

, r(Ł(s)KR
))þ k0g]þ º0 , E0[log f (x; Ł0)] (s ¼ 1, . . . , S):

Based on Lemma 8 we partition ¨9n,K. Define a subset of ¨9n,K by

¨9n,K,s � fŁ 2 ¨9n,K j ŁKR
2 B(Ł(s)KR

, r(Ł(s)KR
))g:

Then ¨9n,K is covered by ¨9n,K,1, . . . , ¨9n,K,S. Again it suffices to prove that for each choice of

K�<c0 , K�>B, Kj�j>A0
, s the ratio of the supremum of the likelihood over ¨9n,K,s to the

likelihood at Ł0 converges to zero almost everywhere. We fix K�<c0 , K�>B, Kj�j>A0
and s

from now on. Then it suffices to prove the following inequality, which is a new intermediate

goal of our proof:
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im sup
n!1

1

n
sup

Ł2¨9n,K,s

Xn
i¼1

log f (xi; Ł)g , E0[log f (x; Ł0)], a:e: (16)

4.3.3. Bounding the likelihood by four terms

In this section we bound the log-likelihood function of the left-hand side of (16) by four

terms depending on the positions of the observations x1, . . . , xn. Let Rn(V ) denote the

number of observations which belong to a set V � R.

Lemma 9. For Ł 2 ¨9n,K,s,

1

n

Xn
i¼1

log f (xi; Ł)g <
1

n

Xn
i¼1

logf fKR
(xi; ŁKR

, r(ŁKR
))þ 3k0g

þ 1

n
Rn(A0) � log

Mv0=c0 þ 2k0
3k0

� �

þ 1

n
Rn(J (Ł)) � (�log k0)þ

1

n

X
xi2J (Ł)

log f (xi; Ł): (17)

From Lemma 8 and the strong law of large numbers, the first term on the right-hand side

of (17) converges to the expectation of a density which has fewer than M components and

the expectation is less than that of the true density by Theorem 1. The second term

converges to a small value because the relative frequency on A0 is very small. The third

term also converges to a small value because the relative frequency on J (Ł) is very small.

The fourth term is somewhat complicated. The component in K�<c0 may have high peaks.

However, the peaks are very narrow and the relative frequency on the interval is very small.

Hence, the fourth term makes little contribution to the likelihood. Therefore, the mean log-

likelihood (the left-hand side of (17)) converges to a value which is less than that of the

true density. In the following we consider the details.

The first and second terms are easy. For the first, by Lemma 8 and the strong law of

large numbers we have

lim
n!1

1

n

Xn
i¼1

logf fKR
(xi; ŁKR

, r(ŁKR
))þ 4k0g , E0[log f (x; Ł0)]� 4º0, a:e: (18)

For the second, by (15) and the strong law of large numbers we have

lim
n!1

1

n
Rn(A0) � log

v0=c0 þ 2k0
3k0

� �
, º0, a:e: (19)

Note that we have �4º0 from the first term and º0 from the second term. In the rest of our

proof we show that both the third and fourth terms can be bounded by º0.
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4.3.4. Bounding the third term

The third term can be bounded by dividing the interval [�An, An] into short intervals of

length 2�(c0).

Lemma 10.

lim sup
n!1

sup
Ł2¨9n,K,s

1

n
Rn(J (Ł)) < 3M � u0 � 2�(c0), a:e:

By this lemma and (14) we have

lim sup
n!1

sup
Ł2¨9n,K,s

1

n
Rn(J (Ł)) � �log k0ð Þ < 3M � u0 � 2�(c0) � jlog k0j , º0, a:e: (20)

This bounds the third term on the right-hand side of (17) from above.

4.3.5. Bonding the fourth term

Finally, we bound the fourth term on the right-hand side of (17) from above. From Lemma

2 we have

1J (Ł)(x) �
XM
m¼1

Æm f m(x; �m, � m) <
XT (Ł)
t¼1

H(J t(Ł)) � 1J t(Ł)(x), x 2 J (Ł): (21)

We now classify the intervals J t(Ł), t ¼ 1, . . . , T (Ł), by the height H(J t(Ł)). Let

c9n � c0 � exp(�n1=4) and define �n(Ł) and �9n(Ł) by

�n(Ł) � t 2 f1, . . . , T (Ł)g j H(J t(Ł)) < M
v0

c9n

� �
, �9n(Ł) � f1, . . . , T (Ł)gn�n(Ł):

Now suppose that

lim sup
n!1

sup
Ł2¨9n,K,s

XT(Ł)
t¼1

1

n
Rn(J t(Ł))log H(J t(Ł))

"

�3
X

t2�n(Ł)
u0 � �(H(J t(Ł))) � log H(J t(Ł))þ

X
t2�9n(Ł)

2

n
log H(J t(Ł))

( )#
< 0, a:e: (22)

Then, from (14), (21) and (22), the fourth term on the right-hand side of (17) is bounded

from above by

lim sup
n!1

1

n
sup

Ł2¨9n,K,s

X
xi2J (Ł)

log f (xi; Ł) < º0, a:e: (23)

Combining (17)–(20) and (23), we obtain (16). Therefore it suffices to prove (22), which is a

new goal of our proof.
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We now consider a further finite covering of ¨9n,K,s. For any T (1 < T < 2M) and

� � f1, . . . , T (Ł)g, define a subset of ¨n,K,s by

¨9n,K,s,T ,� � fŁ 2 ¨9n,K,s j T (Ł) ¼ T , �n(Ł) ¼ �g:

Then (22) is derived from the following two lemmas.

Lemma 11. For �9 ¼ f1, . . . , Tgn�,

lim sup
n!1

sup
Ł2¨9n,K,s,T ,�

X
t2�9

1

n
Rn(J t(Ł)) � log H(J t(Ł))� 3

X
t2�9

2

n
log H(J t(Ł))

" #
< 0, a:e:

Lemma 12.

lim sup
n!1

sup
Ł2¨9n,K,s,T ,�

"
sum
t2�

1

n
Rn(J t(Ł)) � log H(J t(Ł))

� 3
X
t2�

u0 � �(H(J t(Ł))) � log H(J t(Ł))

#
< 0, a:e:

This completes the proof of Theorem 2.

5. Discussions

In this paper we consider the strong consistency of the MLE for mixtures of location–scale

distributions. We treat the case where the scale parameters of the component distributions

are restricted from below by cn ¼ exp(�nd), 0 , d , 1, and give the regularity conditions

for the strong consistency of MLE.

As in the case of the uniform mixture in Tanaka and Takemura (2005), it is readily

verified that if cn decreases to zero faster than exp(�n), then the consistency of the MLE

fails. Therefore the rate of cn ¼ exp(�nd), 0 , d , 1, obtained in this paper is almost the

lower bound of the order of cn which maintains strong consistency.

Although we treat the univariate case in this paper, it is clear that the result obtained here

can be extended to the multivariate case under the condition that components are bounded

and their tails decrease to zero fast enough if the minimum singular values of the scale

matrices of the components are restricted from below by cn.

Finally, let us consider some sufficient conditions for the regularity conditions. For

Łm 2 �m and any positive real number r, let f m(x; Łm, r) � supdist(Ł9m,Łm)<r f m(x; Ł9m). Let ˆ
be any compact subset of �m. Consider the following two conditions.

Assumption 5. For each Łm 2 ˆ and sufficiently small r, f m(x; Łm, r) is measurable.

Assumption 6. For each Łm 2 ˆ, if lim j!1 Ł( j)m ¼ Łm, then lim j!1 f m(x; Ł
( j)
m ) ¼ f m(x; Łm)

for all x.
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If Assumptions 5 and 6 hold, then it is easily verified that Assumptions 2 and 3 hold.

Thus Assumptions 1 and 4–6 are sufficient conditions for regularity conditions and

Assumptions 5 and 6 are checked more easily. For example, a finite mixture density which

consists of a normal, t and uniform on an open interval satisfies Assumptions 1 and 4–6.
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