Bernoulli

  • Bernoulli
  • Volume 11, Number 6 (2005), 971-985.

Pointwise universal consistency of nonparametric density estimators

Jose M. Vidal-Sanz

Full-text: Open access

Abstract

This paper presents sufficient conditions for pointwise universal consistency of nonparametric delta estimators and shows the application of these conditions for some classes of nonparametric estimators.

Article information

Source
Bernoulli, Volume 11, Number 6 (2005), 971-985.

Dates
First available in Project Euclid: 16 January 2006

Permanent link to this document
https://projecteuclid.org/euclid.bj/1137421636

Digital Object Identifier
doi:10.3150/bj/1137421636

Mathematical Reviews number (MathSciNet)
MR2188837

Zentralblatt MATH identifier
1099.62038

Keywords
delta estimators pointwise approximation pointwise universal consistency

Citation

Vidal-Sanz, Jose M. Pointwise universal consistency of nonparametric density estimators. Bernoulli 11 (2005), no. 6, 971--985. doi:10.3150/bj/1137421636. https://projecteuclid.org/euclid.bj/1137421636


Export citation

References

  • [1] Arias de Reyna, J. (2002) Pointwise Convergence of Fourier Series. New York: Springer-Verlag.
  • [2] Basawa, I.V. and Prakasa Rao, B.L.S. (1980) Statistical Inference for Stochastic Processes. New York: Academic Press.
  • [3] Bary, N.K. (1964) A Treatise on Trigonometric Series, 2 vols. Oxford: Pergamon Press.
  • [4] Bergh, J. and Löfström, J. (1976) Interpolation Spaces. An Introduction, Grundlehren Math. Wiss. 223. Berlin: Springer-Verlag.
  • [5] Carleson, L. (1966) On convergence and growth of partial sums of Fourier series. Acta Math., 116, 135-157.
  • [6] de Guzman, M. (1975) Differentiation of Integrals in Rn. Lecture Notes in Math. 481. Berlin: Springer-Verlag.
  • [7] Devroye, L. (1981) On the almost everywhere convergence of nonparametric regression function estimates. Ann. Statist., 9, 1310-1319.
  • [8] Devroye, L. (1987) A Course in Density Estimation, Progr. Probab Statist. 14. Boston: Birkhäuser.
  • [9] Devroye, L. and Györfi, L. (1985) Nonparametric Density Estimation. The L1 View. New York: Wiley.
  • [10] Devroye, L., Györfi, L. and Lugosi, G. (1996) A Probabilistic Theory of Pattern Recognition. New York: Springer-Verlag.
  • [11] Edwards, R.E. (1979) Fourier Series. A Modern Introduction. Vol. 1. Berlin: Springer-Verlag.
  • [12] Fefferman, C. (1971) On the convergence of multiple Fourier series. Bull. Amer. Math. Soc., 77, 744-755.
  • [13] Garsia, A.M. (1970) Topics in Almost Everywhere Convergence. Chicago: Markham.
  • [14] Greblicki, W., Krzyzak, A. and Pawlak, M. (1984) Distribution-free pointwise consistency of kernel regression estimate. Ann. Statist., 12, 1570-1575.
  • [15] Györfi, L., Kohler, M., Kryzak, A. and Walk, H. (2002) A Distribution Free Theory of Nonparametric Regression. New York: Springer-Verlag.
  • [16] Hunt, R.A. (1968) On the convergence of Fourier series. In D.T. Haimo (ed.), Orthogonal Expansions and Their Continuous Analogues, pp. 235-255. Carbondale: Southern Illinois University Press.
  • [17] Jørsboe, O.G. and Mejlbro, L. (1982) The Carleson-Hunt Theorem on Fourier Series, Lecture Notes in Math. 911. Berlin: Springer-Verlag.
  • [18] Kolmogorov, A.N. (1926) Une série de Fourier-Lebesgue divergente partout. C. R. Acad. Sci. Paris, 183, 1327-1329.
  • [19] Körner, T.W. (1981) Everywhere divergent Fourier series. Colloq. Math., 45, 103-118.
  • [20] Mozzochi, C.J. (1971) On the Pointwise Convergence of Fourier Series. Berlin: Springer-Verlag.
  • [21] Prakasa Rao, B.L.S. (1983) Nonparametric Functional Estimation. Orlando, FL: Academic Press.
  • [22] Rudin, W. (1974) Real and Complex Analysis. (2nd edn). New York: McGraw-Hill.
  • [23] Sjölin, P. (1971) Convergence almost everywhere of certain singular integrals and multiple Fourier series. Ark. Math., 9, 65-90.
  • [24] Stein, E.M. (1970) Singular Integrals and Differentiability Properties of Functions. Princeton, NJ: Princeton University Press.
  • [25] Stone, C.J. (1977) Consistent nonparametric regression. Ann. Statist., 5, 595-645.
  • [26] Terrell, G.R. (1984) Efficiency of nonparametric density estimators. Technical report, Department of Mathematical Sciences, Rice University.
  • [27] Terrell, G.R. and Scott, D.W. (1992) Variable kernel density estimation. Ann. Statist., 20, 1236-1265.
  • [28] Vidal-Sanz, J.M. (1999) Universal consistency of delta estimators. PhD thesis (in Spanish), Universidad Carlos III de Madrid.
  • [29] Vidal-Sanz, J.M. and Delgado, M.A. (2004) Universal consistency of delta estimators. Ann. Inst. Statist. Math., 56, 791-818.
  • [30] Walk, H. (2001) Strong universal pointwise consistency of recursive regression estimates. Ann. Inst. Statist. Math., 53, 691-707.
  • [31] Walter, G. and Blum, J.R. (1979) Probability density estimation using delta sequences. Ann. Statist., 7, 328-340.
  • [32] Watson, G.S. and Leadbetter, M.R. (1963) On the estimation of the probability density I. Ann. Math. Statist., 34, 480-491.
  • [33] Watson, G.S. and Leadbetter, M.R. (1964) Hazard analysis II. Sankhya Ser. A, 26, 101-116.
  • [34] Wheeden, R. and Zygmund, A. (1977) Measure and Integral. New York: Marcel Dekker.
  • [35] Whittle, P. (1958) On smoothing a probability density function. J. Roy. Statist. Soc. Ser. B, 20, 334-343.
  • [36] Winter, B.B. (1973) Strong uniform consistency of integrals of density estimation. Canad. J. Statist., 1, 247-253.
  • [37] Winter, B.B. (1975) Rate of strong consistency of two nonparametric density estimators. Ann. Statist., 3, 759-766.
  • [38] Zygmund, A. (1959) Trigonometric Series, 2 vols. Cambridge: Cambridge University Press.