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1. Introduction

Let P be a probability function in (Rd , Bd) which is absolutely continuous with respect to

the � -finite measure �, and let f ¼ dP=d� 2 L1(R
d , Bd , �) be the corresponding Radon–

Nikodym derivative. Usually the Lebesgue measure º is considered and f is the associated

probability density function (pdf), but other measures cannot be disregarded – for example,

the restriction of º to some interval (such as [��, �]d in Fourier series framework), or the

distribution associated with some control population in the design of experiments context.

Given a random sample of independent observations fX i, i ¼ 1, . . . , ng from P, a delta

estimator of f is defined as

f̂f n(x) ¼
1

n

Xn
i¼1

Kmn
(x; X i),

where fmngn2N is known as a smoothing sequence and fKmn
gn2N as a generalized kernel

sequence. The smoothing sequence belongs to some directed set I, which is a non-empty set

endowed with a partial preorder <, such that if m1, m2 2 I, then there exists an m3 2 I such

that m1 < m3 and m2 < m3. It is assumed that the smoothing sequence fmngn2N diverges in

I as n ! 1, (i.e., for all M 2 I there exists an nM 2 N such that mn > M for all n > nM ).

For example, fmng is a sequence of positive definite matrices ordered by decreasing a norm

in kernel estimation of multivariate densities, whilst mn is the order of a polynomial in

Fourier series estimators.

Delta estimators were introduced by Whittle (1958), encompassing all the linear

nonparametric estimators of density functions. The asymptotic unbiasedness of these

estimators requires that the limit of E[ f̂f n(x)] can be thought of as
Ð
�(z� x) f (z)º(dz),

where � is the Dirac delta generalized function with a jump at zero, and this is the reason

for the name ‘delta estimator’. Some examples of delta estimators are given in Table 1,

where I A(x) denotes the characteristic function of the set A (i.e., I A(x) ¼ 1 if x 2 A, and
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zero otherwise), K is integrable and integrates to unity, and fak , bkgk2N is a biorthonormal

basis on Lp(�) :¼ Lp(R
d , Bd , �), provided f 2 Lp(�). Furthermore, many nonlinear

estimators can be approximated, at least asymptotically, by a delta estimator. Terrell

(1984) and Terrell and Scott (1992) have shown that all nonparametric density estimators

which are continuous and differentiable functionals of the empirical distribution function

can be asymptotically interpreted as delta estimators.

Watson and Leadbetter (1963), Walter and Blum (1979) and Prakasa Rao (1983) have

provided sufficient conditions for global Lp-consistency and pointwise consistency of delta

estimators. Winter (1973, 1975) has studied uniform consistency and the consistency of the

corresponding smooth integrated distribution function estimator. Watson and Leadbetter

(1964) have established asymptotic normality. Basawa and Prakasa Rao (1980, Chapter 11)

have provided results for dependent observations. In this literature, some integrability

conditions on the pdf are often assumed (e.g., f 2 Lp(R
d , Bd , �), with 1 , p , 1), and

consistency is achieved under smoothness conditions on the pdf (e.g., f belongs to a

Sobolev space).

Universal consistency was introduced by Stone (1977) to ensure global L1-consistency of

nonparametric estimators regardless of any smoothness assumption on f . The literature is

extensive: for a review, see Devroye and Györfi (1985) and Devroye (1987) who focused on

density estimation, Györfi et al. (2002) on regression estimation and Devroye et al. (1996)

on pattern recognition. Universality usually refers to L1(�), but sometimes other Lp spaces

are considered. For example, L2 is the standard space in nonparametric regression, and L2 is

also the natural framework for density estimation with an orthogonal basis. In this context,

universality refers to non-smoothness requirements on the pdf. Universal consistency for

delta estimators using Lp norms has been studied in Vidal-Sanz (1999) and Vidal-Sanz and

Delgado (2004).

The literature on pointwise universal consistency is not so extensive and focuses on the

estimation of regression functions; see Devroye (1981), Greblicki et al. (1984) and Walk

(2001). In this paper we study the pointwise universal consistency of delta estimators in

L1(�).

Definition 1 Pointwise universal consistency. Let � be a � -finite measure in (Rd , Bd) and P

a probability function satisfying P � � (i.e., P is absolutely continuous with respect to �).
We say that a delta estimator f̂f n is strongly (or weakly) consistent almost everywhere (a.e.) if

j f̂f n(x)� f (x)j ! 0 almost surely (in probability), for almost every x 2 Rd with respect to the

measure �. We say that the convergence is universal when it holds for all P � �.

Table 1. Examples of delta estimates

Estimators Generalized kernel Index set I

Histograms Km(x, z) ¼
P

A2m I A(x)I A(z)=º(A) Countable measurable partitions

Kernels Km(x, z) ¼ det(m)�1K(m�1(z� x)) Positive definite matrices

Biorthonormal basis Km(x, z) ¼
Pm

k¼1ak(x)bk(z) Non-negative integers
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Note that pointwise universal consistency (PUC) is also relevant for establishing global

universal consistency on L1(�), by Scheffé’s theorem. Some estimators do not satisfy PUC,

but a weakened version of this property holds, namely, that pointwise consistency is

satisfied for all densities f 2 Lp(�), for some p 2 (1, 1). For example, Fourier series

estimators do not satisfy PUC, but pointwise consistency is satisfied for all densities

f 2 L2([��, �]), without smoothness requirements. This weakened form of universality is

interesting as pointwise consistency can be used to prove Lp-global consistency by using

dominated convergence arguments. Although I will not stress this line of research, the

results can be readily adapted to an Lp(�) space.

The aim of this paper is to provide fairly primitive conditions which are sufficient for

universal pointwise consistency of delta estimators. To this end, we use the triangular

inequality,

j f̂f n(x)� f (x)j < jE[ f̂f n(x)]� f (x)j þ j f̂f n(x)� E[ f̂f n(x)]j: (1)

The first term on the right-hand side is known as a bias term, which is deterministic, and the

second term as a variation term, which is stochastic. In order to study the pointwise universal

convergence to zero of the bias term we will consider functional analysis results related to the

approximation theory. In order to study the convergence to zero of the variance term we will

use laws of large numbers for triangular arrays.

Section 2 considers pointwise universal unbiasedness. We consider pointwise boundedness

of linear operators and provide a characterization for pointwise universal asymptotic

unbiasedness. We present some examples that illustrate the application of these results.

Section 3 considers sufficient conditions for the weak and strong universal convergence of

the variation term. Examples are included to show the application of these conditions.

2. Pointwise universal unbiasedness

In this section we study the bias problem in a pointwise sense. Let Æn( f )(x)

¼
Ð
Kmn

(x, z) f (z)�(dz) be the expected value of f̂f n(x) with respect to the probability

distribution P with pdf f . For any smoothing number fmngn>1, the estimator f n is

universally asymptotically unbiased in the L1-global sense if and only if the sequence of

linear operators fÆng is an approximate identity in L1(�); in other words, for all f 2 L1(�)
we have that limn!1kÆn( f )� f kL1( �) ¼ 0.

Regarding the pointwise convergence, we say that Æn( f ) converges a.e. to f if and only

if jÆn( f )(x)� f (x)j ! 0 except for sets of �-null measure; that is, for all f 2 L1(�) and all

� . 0, limn!1�(fx 2 Rd : supn9>njÆn9( f )(x)� f (x)j . �g) ¼ 0. To characterize the point-

wise approximation property, we first introduce a boundedness condition:

Definition 2 Boundedness in measure. Let Æn be a linear operator on L1 (Rd , Bd , �). We
say that Æn is bounded in measure (i.e., it is an operator of weak type 1 ), if and only if for all

� . 0, there exists a � . 0 such that
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sup
k f kL1( �)<1

�(fx 2 Rd : jÆn( f )(x) . �g) < �:

A sequence fÆng of linear operators is uniformly bounded in measure if the maximal

operator ÆM ( f )(x) ¼ supn2NjÆn( f )(x)j is such that, for all � . 0, there exists a � . 0 such

that

sup
k f kL1( �)<1

�(fx 2 Rd : ÆM ( f )(x) . �g) < �: (2)

If Æn is bounded in norm, then it is bounded in measure, by Markov’s inequality. Notice

that the maximal operator is not a linear operator, but a sublinear one.

Next, we present a Banach–Steinhaus type result which plays a crucial role in the

arguments used in the theory of pointwise approximation. Garsia (1970, Chapter 1) presents

some related results. Given a topological space, a G� set is a set that can be obtained as a

numerable intersection of open sets. Note that in Banach spaces without isolated points,

such as L1 (Rd , Bd , º), every dense G� set is non-numerable (see Rudin 1974, Theorem

5.3.3).

Theorem 1 (Pointwise uniform boundedness theorem). Let fÆng be a sequence of linear

operators in L1 (Rd , Bd , �), all of them bounded in measure. Then only one of the following

statements holds:

(i) fÆngn2N is uniformly bounded in measure.

(ii) For all � . 0, there exists a C� � L1(�), where C� is a dense G� set, such that for all

f 2 C�,

�(fx 2 Rd : ÆM ( f )(x) ¼ 1g) . �: (3)

Proof. Define the set V�
� ¼ f f 2 L1(�) : �(fx 2 Rd : ÆM ( f )(x) . �g) . �g, for all � . 0

and all � . 0. We first prove that this is an open set.

We say that the linear operator Æn is continuous in measure, n 2 N, if and only if, for all

fgkgk2N, g in L1(�) such that limk!1 kgk � gkL1( �) ¼ 0,

lim
k!1

�(fx 2 Rd : jÆn(gk ; x)� Æn(g; x)j . �g) ¼ 0, for all � . 0:

Since Æn is bounded in measure, it is continuous in measure. Thus, for each n 2 N, the

sublinear operator ÆM
n ( f )(x) ¼ supn9<njÆn9( f )(x)j is also continuous in measure. Then, for all

n 2 N, the sets

f f 2 L1(�) : �(fx 2 Rd : ÆM
n ( f )(x) . �g) . �g

are open, implying that V�
� is open.

Now consider a sequence f�kgk2N dense in Rþ. Thus, for all � . 0, we have a sequence

fV � k

� gk2N of open sets. Assume that there exists a k 2 N such that V
� k

� is not dense in

L1(�). Then there exists an f 0 2 L1(�) and r . 0 such that k f kL1( �) < r implies

( f 0 þ f ) =2 V
� k

� . Thus, �(fx 2 Rd : ÆM ( f 0 þ f )(x) . �kg) < � for all f 2 L1(�) such that

k f kL1( �) < r. Note that f ¼ ( f 0 þ f )� f 0, so then
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�(fx 2 Rd : ÆM ( f )(x) . 2�kg) < �(fx 2 Rd : ÆM ( f 0 þ f )(x) . �kg)

þ �(fx 2 Rd : ÆM ( f0)(x) . �kg) < 2�:

Therefore,

sup
k f kL1(�)<r

�(f� 2 Rd : ÆM ( f )(x) . 2�kg) <
2�

r
,

which implies that ÆM is bounded in measure, with � ¼ 2�=r and � ¼ 2�k .

On the other hand, if every V
� k

� is dense in L1(�) then C� ¼ \k2N V
� k

� is a dense G� set

in L1(�), applying Baire’s theorem (see Rudin 1974). Obviously, for all f 2 C� we have, for

all �k , �(fx 2 Rd : ÆM ( f )(x) . �kg) . �, and f�kgk2N is dense in Rþ, so that condition

(3) follows. h

A result analogous to the previous theorem can be established on Lp(R
d , Bd , �), with

1 , p , 1. For spaces Lp, the uniform boundedness can often be established using an

interpolation theorem (see Zygmund 1959, Vol. II, Chapter XII, Section 4; Bergh and

Löfström 1976; Jørsboe and Mejlbro 1982, Theorem 1.9, pp. 8–9).

The following theorem provides conditions on the generalized kernel sequence

fKmn
(x, z)g, which are sufficient to guarantee that the sequence fÆng satisfies a.e.

convergence and, therefore, that the associated delta estimator is universally asymptotically

pointwise unbiased.

Theorem 2 (Pointwise approximation central theorem). Let fÆng be a sequence of linear

operators in L1(R
d , Bd , �). Assume that:

(i) the sequence fÆng is uniformly bounded in measure;

(ii) there exists a set G � L1(�) dense such that for all ~ff 2 G, Æn( ~ff ) ! ~ff a.e.

Then fÆng is an approximate identity in the a.e. sense, that is, Æn( f ) ! f a.e. for all

f 2 L1 (�). If the operators fÆng are all bounded in measure on L1(�), then assumptions (i)

and (ii) are also necessary.

Proof. We divide the proof into two parts. Part I. Sufficient conditions. Assume that there

exists a dense set G � L1(�), such that for all ~ff 2 G and all � . 0,

lim
n!1

� x 2 Rd : sup
n9>n

jÆn9( ~ff )(x)� ~ff (x)j . �

� �� �
¼ 0:

As G is a dense set, for all f 2 L1(�) and for all � . 0, there exists an ~ff 2 G such that

k f � ~ff kL1( �) < � By the triangular inequality, for each n and each x 2 Rd ,

sup
n9>n

jÆn9( f )(x)� f (x)j < sup
n9>n

jÆn9( f )(x)� Æn9( ~ff )(x)j

þ sup
n9>n

jÆn9( ~ff )(x)� ~ff (x)j þ j ~ff (x)� f (x)j,
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Thus, for all f 2 L1(�) and for all � . 0,

� x 2 Rd : sup
n9>n

jÆn9( f )(x)� f (x)j . �

� �� �
< � x 2 Rd : sup

n9>n

jÆn9( f � ~ff )(x)j . �

3

� �� �

þ � x 2 Rd : sup
n9>n

jÆn9( ~ff )(x)� ~ff (x)j . �

3

� �� �

þ � x 2 Rd : j ~ff (x)� f (x)j . �

3

� �� �
:

The first term is arbitrarily small by uniform boundedness in measure,

� x 2 Rd : sup
n9>n

jÆn9( f � ~ff )(x)j . �

3

� �� �
< � x 2 Rd : ÆM ( f � ~ff )(x) .

�

3

� �� �

< � x 2 Rd : ÆM f � ~ff

k f � ~ff kL1( �)

 !
(x) � k f � f̂f kL1( �) .

�

3

( ) !

< sup
k f kL1( �)<1

� x 2 Rd : ÆM ( f )(x) .
�

3�

� �� �
< �1:

Notice that �1 can be made arbitrarily small for � to be small enough.

Then, for all f 2 L1(�) and for all � . 0,

� x 2 Rd : sup
n9>n

jÆn9( f )(x)� f (x)j . �

� �� �

< �1 þ � x 2 Rd : sup
n9>n

jÆn9( ~ff )(x)� ~ff (x)j . �

3

� �� �
þ k ~ff � f kL1( �)

�=3

< �1 þ � x 2 Rd : sup
n9>n

jÆn9( ~ff )(x)� ~ff (x)j . �

3

� �� �
þ 3�

�
:

Since �, �1 . 0 are arbitrarily small, and the second term on the right-hand side of last

inequality tends to zero for all � . 0, the a.e. approximation follows.

Part II. Necessary condition. Assume that Æn( f ) ! f a.e. for all f 2 L1 (�). Thus, the
same property trivially holds for every dense set G � L1(�).

Assume that fÆng is an approximate identity in a pointwise a.e. sense, and that all of the

Æn operators are bounded in measure but uniform boundedness in measure is not satisfied.

Thus by Theorem 1, for all � . 0, there exists a C� � L1(�), which is a dense G� set, such

that for all f 2 C�, �(fx 2 Rd : supn2NjÆn( f )(x)j ¼ 1g) . 2�. In other words, there exists

a B � Rd , with �(B) . 2�, such that for all x 2 B, supn2NjÆn( f )(x)j ¼ 1. On the other

hand, j f (x)j , 1 holds a.e. for all f 2 L1(�) (in particular, for all f 2 C�), because there

exists a �� . 0, such that �(fx 2 Rd : j f (x)j . ��g) < ��1
� k f kL1( �) , �. In other words, for

all � . 0, there exists an A � Rd with �(Ac) , �, such that supx2Aj f (x)j , 1.

Applying the triangular inequality, jÆn( f )(x)� f (x)j > j jÆn( f )(x)j � j f (x)j j. Define

C ¼ A \ B. Obviously, for all x 2 C and all f 2 C�,
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jÆn( f )(x)� f (x)j > j jÆn( f )(x)j � j f (x)j j ¼ 1:

Notice that ��(C) . �, since

�(B) ¼ �(A \ B)þ �(Ac \ B) < �(A \ B)þ �(Ac) ¼ �(C)þ �(Ac),

so then �(C) > �(B)� �(Ac) . 2�� � ¼ �.
Thus, for all � . 0, there exists a C� � L1(�), which is a dense G� set, such that for all

f 2 C�,

� x 2 Rd : sup
n2N

jÆn( f )(x)� f (x)j ¼ 1
� �� �

. �: (4)

Since all elements of the sequence fÆng are bounded in measure, the triangular inequality

implies that for all n 2 N, jÆn( f )(x)� f (x)j < jÆn( f )(x)j þ j f (x)j , 1 a.e. Thus,

x 2 Rd : sup
n2N

jÆn( f )(x)� f (x)j ¼ 1
� �

¼ x 2 Rd : lim
n2N

jÆn( f )(x)� f (x)j ¼ 1
� �

:

Therefore, (4) implies that for all f 2 C�,

� x 2 Rd : lim
n2N

jÆn( f )(x)� f (x)j ¼ 1
� �� �

. �,

which, contradicts the a.e. approximation property. h

Assume that fÆng satisfies the a.e. universal approximation property in L1(�). Then, for
all f f rgr2N, f � L1(�) such that lim

r!1
k f r � f kL1( �) ¼ 0, we have that

lim
r!1

lim
n!1

jÆn( f r)(x)� f (x)j ! 0 a:e:

The proof is a slight modification of the above result.

Next we present sufficient conditions for the pointwise approximation property. First, we

define the positive majorized operator of Æn( f )(x) ¼
Ð
Kmn

(x, z) f (z) �(dz) as the operator

jÆjn( f )(x) ¼
ð
jKmn

(x, z)j f (z) �(dz):

Theorem 3 (Sufficient conditions for pointwise approximation). Let fÆng be a sequence

of linear operators on L1(R
d , Bd , �). Assume that:

(i) The sequence fjÆjng is uniform bounded in measure.

(ii)
Ð
Kmn

(x, z)�(dz) ! 1, a.e.

(iii) For all � . 0, there is some M� . 0, such that supn2N
Ð
kx�zk,� jKmn

(x, z)j�(dz)
, M� a.e.

(iv)
Ð
kx�zk.�jKmn

(x, z)j�(dz) ! 0 a:e:, for all � . 0.

Then Æn( f ) ! f a.e. for all f 2 L1(�).

Proof. First, it will be proved that if fjÆjng is uniformly bounded in measure, then fÆng is

also uniformly bounded in measure. Since the maximal operators satisfy
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ÆM ( f )(x) ¼ sup
n2N

jÆn( f )(x)j < sup
n2N

ð
jKmn

(x, z)j f (z)j �(dz) ¼ jÆjM (j f j)(x),

with jÆjM ¼ supn2IjÆjn, then, for all � . 0,

�(fx 2 Rd : ÆM ( f )(x) . �g) < �(fx 2 Rd : jÆjM (j f j)(x) . �g):

Taking the supremum in the unit ball k f kL1( �) < 1, the aforementioned result is proved.

Let Cc(R
d) be the set of continuous and compactly supported functions. Next, we prove

the approximation property for any f 2 L1(�) with an a.e. identical element in Cc(R
d). As

Cc(R
d) is a dense set in Lp(�), 1 < p , 1, the result follows from Theorem 2. We

proceed in two steps.

Step 1. For all � . 0, and all h(x, z) 2 Cc(R
d 3 Rd),����

ð
fz :kx�zk.�g

h(x, z)Kmn
(x, z) �(dz)

���� < khk1 �
ð
fz:kx�zk.�g

jKmn
(x, z)j�(dz) ! 0 a:e:,

using assumption (iv), and khk1 , 1.

Step 2. We prove that for all f 2 L1(�) with an a.e. identical element in Cc(R
d), the

sequence Æn( f ) ! f a.e. By the triangular inequality,

sup
n9>n

jÆn9( f )(x)� f (x)j < sup
n9>n

����
ð
( f (z)� f (x)) Kmn9

(x, z) �(dz)

����
þ sup

n9>n

����
ð
Kmn9

(x, z)�(dz) f (x)� f (x)

����:
By assumption (ii),

sup
n9>n

jÆn9( f )(x)� f (x)j < sup
n9>n

����
ð
( f (z)� f (x)) Kmn9

(x, z) �(dz)

����
þ k f k1 sup

n9>n

����
ð
Kmn9

(x, z)�(dz)� 1

����
¼ sup

n9>n

����
ð
( f (z)� f (x))Kmn9

(x, z)�(dz)

����þ o(1),

where the o(1) convergence holds in the a.e. sense. Then

sup
n9>n

jÆn9( f )(x)� f (z)j < sup
n9>n

����
ð
fz:kx�zk<�g

( f (z)� f (x))Kmn9
(x, z)�(dz)

����
þ sup

n9>n

����
ð
fz:kx�zk.�g

( f (z)� f (x))Kmn9
(x, z)�(dz)

����þ o(1):

As f is uniformly continuous, for all � . 0, there exists a � . 0 such that kx� zk < �
implies that j f (x)� f (z)j < �. Applying assumption (iii) we obtain
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sup
n9>n

jÆn9( f )(x)� f (x)j < � � M� þ sup
n9>n

����
ð
fz :kx�zk.�g

h(x, z)Kmn9
(x, z) �(dz)

����þ o(1) a:e:

with h(x, z) ¼ ( f (z)� f (x)). The first term on the right-hand side is arbitrarily small, whilst

the second term tends to zero a.e. by step 1, and the result is proved. h

A sufficient condition for assumption (iv) in Theorem 3 is that, for some s > 1,

lim
n!1

� x 2 Rd : sup
n9>n

ð
jKmn9

(x, z)jkx� zks�(dz) . �

� �� �
¼ 0,

for all � . 0. This is a consequence of Ifkx�zk.�g(z) , kx� zks � ��s, and since jÆjn is a

monotone operator, then for all � . 0,

sup
n9>n

jÆjn9(Ifkx�zk.�g(z))(x) , ��s sup
n9>n

jÆjn9(kx� zks)(x):

Theorems 2 and 3 can be applied to the most popular nonparametric estimators, using

the Hardy–Littlewood–Paley theory. The Hardy–Littlewood maximal operator on

L1(R
d , Bd , º), defined as

��( f )(x) ¼ sup
�.0

1

º(B(x, �))

ð
B(x,�)

f (z)dz,

with B(x, �) the �-ball, satisfies for some cd . 0, k��( f , x)kL p(º) < cdk f kLn(º) for all

f 2 L1; and therefore ��( f )(x) ¼
Ð
f (z)IB(x, �)(z)=º(B(x, �))dz is uniformly bounded in

measure. For further details, see Stein (1970), de Guzman (1975) and Wheeden and

Zygmund (1977).

Example 1. Consider the kernel estimator in L1(R
d , Bd , º). If there exists a closed interval

C � Rd such that c1 IC(u) < jK(u)j < c2 IC(u), for some c1, c2 . 0, thenð
sup
m2I

ð
jKm(x, z)j f (z)dz dx < ck f kL1(º),

applying the Hardy–Littlewood argument, so that kernel operators are uniformly bounded in

measure. If kmnk ! 0, the pointwise universal unbiasedness readily follows from Theorem 3,

as ð
kx�zk.�

jKmn
(x, z)jdz < ��1 1

det(mn)

ð
kx� zkK(m�1(z� x))dz

¼ ��1

ð
kmnukK(u)du < kmnk��1

ð
C

kukK(u)du ! 0,

for any � . 0 and any matrix norm such that kABk < kAk kBk.

Example 2. Define the set I0 of regular partitions of Rd as the set of Borel measurable

countable partitions m of finite diameter, satisfying inf A2mº(A) . 0, such that the maximum

diameter of the partition tends to zero as partitions become thinner, and I0 covers Rd in the
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sense of Vitali (i.e., for each x 2 Rd and every sequence fmng � I0 ordered with respect to

the thinner relation, there exist An 2 mn such that x 2 \nAn and the diameter of An tends to

zero). Consider the histogram in L1(R
d , Bd , º), defined for fmng � I0. Using the fact that

��( f )(x) ¼ sup�.0Pf (B(x, �))=º(B(x, �)) satisfies k�( f )kL1(º) < cdk f kL1(º), thenð
sup
n2N

ð X
A2mn

I A(x)I A(z)

º(A)

 !
f (z)dz

 !
dx ¼

ð
sup
n2N

X
A2mn

I A(x)Pf (A)

º(A)
dx < ck f kL1(º),

and the operators are uniformly bounded in measure. The pointwise universal unbiasedness

follows from an argument analogous to Györfi et al. (2002, Lemma 24.5), which is related to

the Lebesgue density theorem, limn!1
P

A2mn
(Pf (A)=º(A))I A(x) ¼ f (x) a.e.

Alternatively, we can apply Theorem 2 to prove that the approximation property is

satisfied for all simple functions S � L1(R
d , Bd , º), which is a dense class in L1. If g 2 S,

then g(z) ¼
PS

r¼1 �r � I Br
(z), for some finite measurable partition m ¼ (B1, . . . , Bs) of R

d ,

with º(Br) , 1 for r ¼ 1, . . . , s. By definition,

Æn(g)(x) ¼
X
A2mn

1

º(A)

ð
A

g(z)º(dz)

� �
I A(x) ¼

X
A2mn

XS
r¼1

�r

1

º(A)

ð
A

I Br
(z)º(dz)

 !
I A(x)

¼
X
A2mn

XS
r¼1

�r

º(A \ Br)

º(A)

 !
I A(x):

Thus, using the fact that
P

A2mn
I A(x) ¼ 1 a.e.,

º(fjÆn(g)(x)� g(x)j . �g) ¼ º sup
n9>n

���� X
A2mn9

XS
r¼1

�r

º(A \ Br)

º(A)
I A(x)�

XS
r¼1

�r I Br
(x)

���� . �

 !

< º sup
n9>n

X
A2mn9

1

º(A)

����XS
r¼1

�r(º(A \ Br)� º(A)I Br
(x))I A(x)

���� . �

 !
:

Next, we prove that this measure tends to zero. If mn > m, that is, mn is thinner than m, then

for all Br 2 m and for all A 2 mn we have one of the following cases: either (i) A \ Br ¼ ˘
and therefore º(A \ Br) ¼ 0, IfA\Brg(x) ¼ 0, or (ii) A � Br and thus º(A \ Br) ¼ º(A),
I A\Br

(x) ¼ I A(x) so that jº(A \ Br)I A(x)� º(A)I A\Br
(x)j ¼ 0. Thus, for all g 2 S, there

exists an m such that supm>mjÆm(g)(x)� g(x)j ¼ 0, except for sets of null measure, and the

aforementioned result is proved.

Example 3. We also consider the a.e. convergence of Dirichlet’s approximate identity fÆng,
where Æn( f )(x) ¼

Ð �
�� Kmn

(z� x) f (z)dz,

Kmn
(u) ¼ sin((2mn þ 1)u=2)

2� sin(u=2)
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is the Dirichlet kernel, and fmng � N, which is related to the Fourier sums in Lp([��, �]),
with 1 < p , 1; see Bary (1964), Zygmund (1959) and Edwards (1979).

Using Theorem 2, we only need to establish a.e. convergence for a dense set of functions

and uniform boundedness in measure. First, trigonometric polynomials are a dense subspace

in Lp([��, �]) with 1 < p , 1, and the Fourier sums of trigonometric polynomials

converge a.e. to the respective polynomials; see Mozzochi (1970, p. 9), Jørsboe and Mejlbro

(1982, pp. 17–20), and Arias de Reyna (2002, Part II). Secondly, the Carleson–Hunt

theorem establishes that the Fourier sums are uniform bounded in measure in the space

Lp([��, �]), with 1 , p , 1. This result was first proved by Carleson (1966) for p ¼ 2,

and extended to the case 1 , p , 1 by Hunt (1968). The original Carleson–Hunt theorem

proves that supk f kL p ([��,�])<1kÆM ( f )kL p([��,�]) , 1, which implies the result using Markov’s

inequality.

Thus, Theorem 2 implies that the Fourier sums satisfy the a.e. approximation property for

every curve in Lp([��, �]) with 1 , p , 1. The proof of the Carleson–Hunt theorem

presents great technical difficulties. The monographs of Mozzochi (1971), Jørsboe and

Mejlbro (1982) and Arias de Reyna (2002) are devoted to self-contained proofs. Garsia

(1970) studies a simplification of Carleson’s result. In Fefferman (1971) and Sjölin (1971)

the Carleson–Hunt theorem is extended to dimensions d . 1.

However, in L1([��, �]) the Fourier sums are bounded in measure, but they are not

uniformly bounded in measure. As a consequence of Theorem 2, the a.e. approximation

fails. This is a well-known problem. A very famous counterexample, due to Kolmogorov

(1926), shows that for some function in L1([��, �]) the Fourier sum diverges a.e. Some

additional results on pointwise divergence can be seen in Körner (1981), Edwards (1979,

p. 80) and Zygmund (1959, Section 8.4). As we can see in the proof of Theorem 2, there is

a dense G� set of functions in L1([��, �]) on which Æn( f )(x) diverges a.e. Since any dense

G� set in L1([��, �]) is non-numerable, the curve considered by Kolmogorov is just one in

the dense and uncountable set of functions with divergence problems.

3. Pointwise convergence of the variation term

The aim of this section is to prove that

j f̂f n(x)� E[ f̂f n(x)]j ¼ n�1
Xn
i¼1

(Kmn
(x, X i)� E[Kmn

(x, X i)]) ! 0,

almost surely (in probability) for almost every x 2 Rd with respect to �, which is immediate

by using a simple law of large numbers for triangular arrays. As usual, a condition on the

smoothing number fmng is necessary in order to prove consistency.

Proposition 1 (Universal pointwise weak consistency of variation term). Assume that for

all probability P with f ¼ dP=d� 2 L1(�), the triangular array fKmn
(x, X i) :

1 < i < ngn2N is such that for some r . 1, E[jKmn
(x, X )jr] ¼ o(n(r�1)), a.e. [�]. Then
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E[j f̂f n(x)� E[ f̂f n(x)]jr] ! 0, j f̂f n(x)� E[ f̂f n(x)]j !p 0,

a.e. [�], with f ¼ dP=d�, and the result holds universally in P.

Proof. We define Zn,i ¼ Kmn
(x; X i). Then

E[j f̂f n(x)� E[ f̂f n(x)]jr] < 2r�1

Pn
i¼1 E[jZn,i � E[Zn,i]jr]

nr
<

2r
Pn

i¼1 E[jZn,ijr]
nr

! 0,

where we have applied the cr and Jensen inequalities. The consistency follows applying

Markov’s inequality. h

The following examples illustrate the application of the previous result.

Example 4. Consider the kernel estimator with K 2 Lr(R
d , Bd , º) for some r . 1. Then, for

all integrable densities f ,

n�(r�1)E[jKmn
(x, X )jr] ¼ 1

n(r�1) det(mn)r

ð
jK(m�1

n (z� x))jr f (z)º(dz)

¼ 1

[n � det(mn)]r�1

ð
jK(u)jr f (xþ mnu)du ¼ O

f (x)
Ð
jK(u)jr du

[n � det(mn)]r�1

� �
,

for a.e. x 2 Rd , by the dominated convergence theorem. It tends to zero when

n � det(mn) ! 1.

Example 5. Consider the histogram in L1(R
d , Bd , º), for regular partitions. Notice that for

any partition m 2 I0, jKm(x, z)j2 ¼
P

A2mjI A(x)I A(z)=º(A)j2 a.e., since the sets in the

partition m are disjoint. Define ª(m) ¼ inf A2m º(A) . 0. The condition n � ª(mn) ! 1
implies that

n�1E[jKmn
(x, X )j2] ¼ 1

n
E
X
A2mn

���� I A(x)I A(X )º(A)

����
2

" #
¼ 1

n

X
A2mn

P(A)

º(A)2
I A(x)

<
1

n � ª(mn)

X
A2mn

P(A)

º(A)
I A(x) ¼

1

n � ª(mn)
E[ f̂f n(x)] ! 0,

a.e., as f̂f n is pointwise universally unbiased.

Example 6. Consider the Dirichlet kernel in Lp([��, �]), with p . 1. Using the fact that

2�Km(u) ¼ cot
u

2

� �
sin(mu)þ cos(mu) ¼ 2

u
sin(mu)þ cot

u

2

� �
� 2

u

� �
sin(mu)þ cos(mu)

and cot(t)� t�1 is bounded on (��=2, �=2), then Km(u) ¼ ��1sin(mu)=uþ O(1). Thus,
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n�1E[jKmn
(x, X )j2] ¼ 1

n

ð�
��

jKmn
(u)j2 f (u� x)du

<
1

n

ð�
��

���� mnjuj
�u

����
2

f (u� x)duþ O
1

n

� �
¼ m2

n

�2n
þ O

1

n

� �
, a:e:,

as jsin(mu)j < jmuj. Weak universal consistency follows from the condition m�1
n þ

m2
n=n ! 0.

The next result establishes strong consistency using a logarithmic growth rate on the

smoothing numbers. Its application is illustrated with some examples.

Theorem 4 (Universal pointwise strong consistency of variation term). Assume that for

any probability function P with f ¼ dP=d� 2 L1(�),X1
n¼1

exp
�n

Mn(x)2

� �
, 1 a:e: [�], (5)

where M n(x) ¼ ess supzjKmn
(x, z)j. Then universal pointwise convergence is satisfied a:e:[�],

universally in P.

Proof. The result is a consequence of Hoeffding’s inequality (see Györfi et al. 2002). Let us

consider Zn,i ¼ Kmn
(x, z). By assumption, Zn,i 2 [�Mn(x), Mn(x)] for i ¼ 1, . . . , n with

probability one. Therefore, for all � . 0,

Pr

���� 1n
Xn
i¼1

(Zn,i � E[Zn,i])

���� . �

" #
< exp

�2n�2

n�1
Pn

i¼1(2Mn(x))2

� �
¼ exp

�n�2

2Mn(x)2

� �
,

and the result follows from the Borel–Cantelli lemma. h

Example 7. Consider the kernel estimator. If K(u) has a global maximum at u ¼ 0, then

Mn(x) ¼ sup
z2Rd

jKmn
(z� x)j ¼ Kmn

(0) ¼ K(0)

det(mn)
,

and the condition in (5) is satisfied if
P1

n¼1 expf�n det(mn)
2g , 1, for which it suffices

that n det(mn)
2=log n ! 1.

Example 8. The histogram satisfies

Mn(x) ¼ sup
z2Rd

���� X
A2mn

I A(x)I A(z)

º(A)

���� ¼ X
A2mn

I A(x)

º(A)
<

P
A2mn

I A(z)

ª(mn)
¼ 1

ª(mn)
,

and the condition in (5) is satisfied if
P1

n¼1 expf�nª(mn)
2g , 1, for which it suffices that

nª(mn)
2=log n ! 1.

Example 9. Consider the Dirichlet kernel in Lp([��, �]), with real p . 1. Let
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Mn(x) ¼ sup
u2[��,�]

���� sin((2mn þ 1)u=2)

2� sin(u=2)

���� < 1

�
sup

u2[��,�]

���� sin(mnu)

u

���� < mn

�
:

The condition in (5) is satisfied if
P1

n¼1 expf�n=m2
ng , 1, for which it suffices that

m2
n(log n)=n ! 0.

Note that in Theorem 4, if Bernstein’s inequality is used instead of Hoeffding’s,

Pr

���� 1n
Xn
i¼1

(Zn,i � E[Zn,i])

���� . �

" #
< exp

�n�2

2 var(Zn,i)þ 2Mn(x)�=3

� �
,

then condition (5) could be replaced by

X1
n¼1

exp
�n

maxfE[jKmn
(x, X )j2], Mn(x)g

� �
, 1 a:e: [�],

so that the required rates in the kernel and histogram examples can be reduced to

n det(mn)=log n ! 1 and nª(mn)=log n ! 1, respectively.
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