The Annals of Statistics

Adaptive goodness-of-fit tests based on signed ranks

Angelika Rohde

Full-text: Open access

Abstract

Within the nonparametric regression model with unknown regression function l and independent, symmetric errors, a new multiscale signed rank statistic is introduced and a conditional multiple test of the simple hypothesis l=0 against a nonparametric alternative is proposed. This test is distribution-free and exact for finite samples even in the heteroscedastic case. It adapts in a certain sense to the unknown smoothness of the regression function under the alternative, and it is uniformly consistent against alternatives whose sup-norm tends to zero at the fastest possible rate. The test is shown to be asymptotically optimal in two senses: It is rate-optimal adaptive against Hölder classes. Furthermore, its relative asymptotic efficiency with respect to an asymptotically minimax optimal test under sup-norm loss is close to 1 in case of homoscedastic Gaussian errors within a broad range of Hölder classes simultaneously.

Article information

Source
Ann. Statist., Volume 36, Number 3 (2008), 1346-1374.

Dates
First available in Project Euclid: 26 May 2008

Permanent link to this document
https://projecteuclid.org/euclid.aos/1211819567

Digital Object Identifier
doi:10.1214/009053607000000992

Mathematical Reviews number (MathSciNet)
MR2418660

Zentralblatt MATH identifier
1216.62069

Subjects
Primary: 62G10: Hypothesis testing 62G20: Asymptotic properties 62G35: Robustness

Keywords
Exact multiple testing exponential inequality multiscale statistic relative asymptotic efficiency signed ranks sharp asymptotic adaptivity

Citation

Rohde, Angelika. Adaptive goodness-of-fit tests based on signed ranks. Ann. Statist. 36 (2008), no. 3, 1346--1374. doi:10.1214/009053607000000992. https://projecteuclid.org/euclid.aos/1211819567


Export citation

References

  • Donoho, D. L. (1994). Statistical estimation and optimal recovery. Ann. Statist. 22 238–270.
  • Dümbgen, L. (2002). Application of local rank tests to nonparametric regression. J. Nonparametr. Statist. 14 511–537.
  • Dümbgen, L. and Johns, R. B. (2004). Confidence bands for isotonic median curves using sign-tests. J. Comput. Graph. Statist. 13 519–533.
  • Dümbgen, L. and Spokoiny, V. G. (2001). Multiscale testing of qualitative hypotheses. Ann. Statist. 29 124–152.
  • Dümbgen, L. and Walther, G. (2008). Multiscale inference about a density. Ann. Statist. 36. To appear.
  • Ermakov, M. S. (1990). Minimax detection of a signal in a white Gaussian noise. Theory Probab. Appl. 35 667–679.
  • Eubank, R. L. and Hart, J. D. (1992). Testing goodness-of-fit in regression via order selection criteria. Ann. Statist. 20 1412–1425.
  • Fan, J. (1996). Test of significance based on wavelet thresholding and Neyman’s truncation. J. Amer. Statist. Assoc. 91 674–688.
  • Fan, J. and Huang, J.-S. (2001). Goodness-of-fit tests for parametric regression models. J. Amer. Statist. Assoc. 96 640–652.
  • Fan, J., Zhang, C. and Zhang, J. (2001). Generalized likelihood ratio statistics and Wilks phenomenon. Ann. Statist. 29 153–193.
  • Hájek, J. and Šidak, Z. (1967). Theory of Rank Tests. Academic Press, New York.
  • Hart, J. D. (1997). Nonparametric Smoothing and Lack-of-Fit Tests. Springer, New York.
  • Horowitz, J. and Spokoiny, V. (2001). An adaptive, rate-optimal test of a parametric mean-regression model against a nonparametric alternative. Econometrica 69 599–631.
  • Horowitz, J. and Spokoiny, V. (2002). An adaptive, rate-optimal test of linearity for median regression models. J. Amer. Statist. Assoc. 97 822–835.
  • Ingster, Y. I. (1982). Minimax nonparametric detection of signals in white Gaussian noise. Problems Inform. Transmission 18 130–140.
  • Ingster, Y. I. (1987). Minimax testing of nonparametric hypotheses on a distribution density in Lp-metrics. Theory Probab. Appl. 31 333–337.
  • Ingster, Y. I. (1993). Asymptotically minimax hypothesis testing for nonparametric alternatives. I–III. Math. Methods Statist. 2 85–114, 171–189, 249–268.
  • Ledwina, T. and Kallenberg, W. C. M. (1995). Consistency and Monte Carlo simulation of a data-driven version of smooth goodness-of-fit tests. Ann. Statist. 23 1594–1608.
  • Ledwina, T. (1994). Data-driven version of Neyman’s smooth test of fit. J. Amer. Statist. Assoc. 89 1000–1005.
  • Leonov, S. L. (1999). Remarks on extremal problems in nonparametric curve estimation. Statist. Probab. Lett. 43 169–178.
  • Lepski, O. V. (1993). On asymptotically exact testing of nonparametric hypotheses. CORE Discussion Paper No. 9329, Univ. Catholique de Louvain.
  • Lepski, O. V. and Tsybakov, A. B. (2000). Asymptotically exact nonparametric hypothesis testing in sup-norm and at a fixed point. Probab. Theory Related Fields 117 17–48.
  • Spokoiny, V. (1996). Adaptive hypothesis testing using wavelets. Ann. Statist. 24 2477–2498.
  • Spokoiny, V. (1998). Adaptive and spatially adaptive testing a nonparametric hypothesis. Math. Methods Statist. 7 254–273.
  • Sz. Nagy, B. (1941). Über Integralungleichungen zwischen einer Funktion und ihrer Ableitung. Acta Sci. Math. 10 64–74.
  • van der Vaart, A. (1998). Asymptotic Statistics. Cambridge Univ. Press.