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ADAPTIVE GOODNESS-OF-FIT TESTS BASED ON
SIGNED RANKS1

BY ANGELIKA ROHDE

Weierstraß-Institut Berlin

Within the nonparametric regression model with unknown regression
function l and independent, symmetric errors, a new multiscale signed rank
statistic is introduced and a conditional multiple test of the simple hypothesis
l = 0 against a nonparametric alternative is proposed. This test is distribution-
free and exact for finite samples even in the heteroscedastic case. It adapts in
a certain sense to the unknown smoothness of the regression function un-
der the alternative, and it is uniformly consistent against alternatives whose
sup-norm tends to zero at the fastest possible rate. The test is shown to be as-
ymptotically optimal in two senses: It is rate-optimal adaptive against Hölder
classes. Furthermore, its relative asymptotic efficiency with respect to an as-
ymptotically minimax optimal test under sup-norm loss is close to 1 in case
of homoscedastic Gaussian errors within a broad range of Hölder classes si-
multaneously.

1. Introduction. Consider the nonparametric regression model with n inde-
pendent observations

Yi = l(Xi) + εi, i = 1, . . . , n,

some unknown regression function l on the unit interval and design points 0 ≤
X1 < · · · < Xn ≤ 1. Throughout this paper, the errors are assumed to be inde-
pendent and symmetrically distributed around zero, which in particular includes
the heteroscedastic case. We postulate Lebesgue continuous error distributions in
addition for the sake of simplicity. Within this model, we are interested in iden-
tifying subintervals in the design space where l deviates significantly from some
hypothetical regression curve lo. For this aim, we develop an exact multiple test
of the simple hypothesis “l = lo” against a nonparametric alternative. The method
does not require a priori knowledge of the explicit error distributions, and it pro-
vides simultaneous confidence statements about deviations of l from lo with given
significance level for arbitrary finite sample size.

For the power investigation of our test, we follow the minimax approach intro-
duced by Ingster (1982, 1993), which permits the set of alternatives to consist of
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an entire smoothness class, separated from the null hypothesis by some distance
δn converging to zero. Typically, the distance to the null hypothesis is quantified
by some seminorm ‖ · ‖. Then for a given significance level α and some positive
number δ the goal is to find a statistical test φ whose minimal power

inf
l∈F : ‖l−lo‖≥δ

Elφ

is as large as possible under the constraint that Eloφ ≤ α. Approximate solutions
for this testing problem are known for various classes F and seminorms ‖ · ‖; see,
for instance, Ingster (1987, 1993) for the case of Lp-norm and Hölder and Sobolev
alternatives, Ermakov (1990) for sharp asymptotic results with respect to the L2-
norm and Sobolev alternatives and Lepski (1993) and Lepski and Tsybakov (2000)
in case of the supremum norm. It is a general problem that the optimal test φ may
depend on F .

In case of an integral norm ‖ · ‖, the problem of adaptive (data-driven) test-
ing a simple or parametric hypothesis is investigated, for example, in Eubank and
Hart (1992), Ledwina (1994), Ledwina and Kallenberg (1995), Fan (1996), Fan,
Zhang and Zhang (2001), Spokoiny (1996, 1998), Hart (1997) and Horowitz and
Spokoiny (2001, 2002). The general procedure is to consider simultaneously a
family of test statistics corresponding to different values of smoothing parameters,
respectively. As Spokoiny (1996) pointed out, the adaptive approach in case of the
L2-norm leads necessarily to suboptimal rates by a factor log logn. In particular,
the tests in Fan (1996) and Spokoiny (1996) are based on the maximum of cen-
tered and standardized statistics and (up to this constraint) rate-optimal adaptive
against a smooth alternative; see also Fan and Huang (2001). For our purpose, the
supremum norm seems to be the most adequate distance. Within the continuous-
time Gaussian white noise model, Dümbgen and Spokoiny (2001) have shown that
in contrast to the L2-case, adaptive testing with respect to sup-norm loss is actu-
ally possible without essential loss of efficiency. They propose a test based on the
supremum of suitably standardized kernel estimators of the regression function
over different locations and over different bandwidths in order to achieve adaptiv-
ity. Unfortunately, their testing procedure depends explicitly on homoscedasticity
and Gaussian errors or errors with at least sub-Gaussian tails. If these assumptions
are violated, the test may lose its exact or even asymptotic validity. Moreover, its
asymptotic power can be arbitrarily small.

In the following section, a new multiscale signed rank statistic is introduced and
a conditional test of a one-point hypothesis against a nonparametric alternative
is developed. In the third section, its asymptotic power is studied in the setting
of homoscedastic errors. A lower bound for minimax testing with respect to sup-
norm loss is provided, which is explicitly given in terms of Fisher information. The
test turns out to be rate-optimal against arbitrary Hölder classes, provided that the
Fisher information of the error distribution is finite. Moreover, a lower bound for its
relative asymptotic efficiency with respect to an asymptotically minimax optimal
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test under sup-norm loss is determined, and the classical efficiency bound 3/π is
recovered even over a broad range of Hölder classes simultaneously. A numerical
example illustrating our method is presented in Section 4. Possible extensions are
briefly discussed in Section 5. All proofs are deferred to Section 6.

For asymptotic investigations, the design variables are supposed to be determin-
istic and sufficiently regular in the sense of the assumption

(D) There exists a strictly positive and continuous Lebesgue probability density h

on [0,1] of finite total variation such that Xi = H−1(i/n), with H the distri-
bution function of h.

By substraction of lo from the observations, we may assume without loss of
generality that lo = 0. Depending on the design density h, it is then assumed that
under the alternative the regression function l belongs to some smoothness class

Hh(β,L) := {
l/

√
h|l ∈ H(β,L; [0,1])},

where for any interval I ⊂ R, H(β,L; I ) denotes the class of Hölder functions on
I with parameters β,L > 0. In case 0 < β ≤ 1,

H(β,L; I ) := {f : I → R||f (x) − f (y)| ≤ L|x − y|β for all x, y ∈ I }.
If k < β ≤ k + 1 for an integer k ≥ 1, let H(β,L; I ) be the set of functions on I

that are k times differentiable and whose kth derivative belongs to H(β − k,L; I ).
We also write H(β,L) for H(β,L; [0,1]). In particular, Hh(β,L) coincides with
H(β,L) for h(·) = 1, corresponding to equidistant design points Xi = i/n, i =
1, . . . , n.

2. The multiscale signed rank statistic. Inspired by the high asymptotic ef-
ficiency of Wilcoxon’s signed rank test in simple location shift families [see Hájek
and S̆idak (1967)], the idea is to define a multiscale testing procedure combining
suitably standardized local signed rank statistics. The construction is related to the
work of Dümbgen (2002), who used local rank statistics for a test of stochastic
monotonicity. In the present context it will turn out that the highest asymptotic
efficiency is achieved by weighted local signed rank statistics.

For some kernel function ψ on [0,1] to be specified later and any pair (s, t)

with 0 ≤ s < t ≤ 1, let ψst be the shifted and rescaled kernel on the interval [s, t],
pointwise given by

ψst (x) := ψ

(
x − s

t − s

)
.

For notational convenience, we simply write ψjk for ψXjXk
, Xj < Xk . For any

1 ≤ j < k ≤ n let Rjk := (Rjk(i))
k
i=j , with Rjk(i) the rank of |Yi | among the

k − j + 1 numbers |Yl|, l = j, . . . , k. Define the local test statistic

Tjk :=
∑k

i=j ψjk(Xi) sign(Yi)Rjk(i)√∑k
i=j ψjk(Xi)2Rjk(i)2

(1)
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if the denominator is not equal to zero; and set Tjk equal to zero otherwise. The
law of Tjk depends heavily on the unknown error distributions, but under the null
hypothesis, the conditional distribution L(Tjk|Rjk) does not—even in case of het-
eroscedastic errors. Hence distribution-freeness may be achieved via conditioning
on the ranks. Note that the denominator in (1) is the conditional standard deviation
of the numerator given Rjk under the null hypothesis.

The question is how to combine these single test statistics in an adequate way.
The following theorem acts as a motivation for our approach.

THEOREM 1. Let the test statistic Tn be defined by

Tn := max
1≤j<k≤n

{|Tjk| −
√

2 log
(
n/(k − j)

)}
,

based on a continuous kernel ψ : [0,1] → R of bounded total variation with∫
ψ(x)dx > 0. Let assumption (D) be satisfied. Then in case of independent iden-

tically distributed errors,

L0(Tn|R1n) →w,P0 L(T0),

where

T0 := sup
0≤s<t≤1

{ | ∫ t
s ψst (x)

√
h(x) dW(x)|

‖ψst

√
h‖2

−
√

2 log
(
1/(H(t) − H(s))

)}
,

with W a Brownian motion on the unit interval.

Here, →w,P refers to weak convergence in probability. It follows from results in
Dümbgen and Spokoiny (2001) that T0 is finite almost surely. The additive correc-
tion in the limiting statistic appears as a suitable calibration for taking the supre-
mum. For it is well known that the maximum of n independent N (0,1)-distributed
random variables equals (2 logn)1/2 + op(1) as n → ∞.

For the testing problem as described in this section, we propose the conditional
test

φα(Y ) :=
{

0, if Tn ≤ κα(R),

1, if Tn > κα(R),

where κα(R) := arg minC>0{P(Tn ≤ C|R) ≥ 1 − α} denotes the generalized
(1 − α)-quantile of the conditional distribution Tn|R under the null hypothesis.
For explicit applications, we determine κα(R) via Monte Carlo simulations which
are easy to implement. This test is distribution-free and keeps the significance level
for arbitrary finite sample size also in the heteroscedastic case. Since the test sta-
tistic is discrete-valued, exact level α is attained only for certain values α ∈ (0,1).
In order to achieve arbitrary significance levels exactly, the test can be canonically
extended to a randomized procedure.
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REMARK (Simultaneous detection of subregions with significant deviation from
zero). The conditional multiscale test may be viewed as a multiple testing pro-
cedure. For a given vector of ranks, the corresponding test statistic Tn exceeds the
(1 − α)-significance level if, and only if, the random family

Dα := {
(Xj ,Xk)|1 ≤ j < k ≤ n;Tjk >

√
2 log

(
n/(k − j)

) + κα(R)
}

is nonempty. Hence one may conclude that with confidence 1 − α, the unknown
regression function deviates from zero on every interval (Xj ,Xk) of Dα .

REMARK (The choice of the kernel function ψ). If the design density is equal
to 1, the limit T0 under the null hypothesis as given in Theorem 1 appears as
combination of standardized kernel estimators for the regression function in the
standard Gaussian white noise model dY (t) = l(t) dt + n−1/2 dW(t), 0 ≤ t ≤ 1.
With a certain choice of the kernel ψ depending on the class of alternatives, it
coincides there with an asymptotically minimax optimal test statistic with respect
to the supremum norm of the testing problem “l = 0” against Hölder alternatives
[Dümbgen and Spokoiny (2001)]. This indicates that in the homoscedastic situa-
tion, our conditional test may achieve the highest asymptotic efficiency with the
same choice of the kernel function. Here, the construction is as follows: For some
Hölder alternative H(β,L), let γβ be the solution to the following minimization
problem:

Minimize ‖γ ‖2 over all γ ∈ H(β,1;R) with γ (0) ≥ 1.(2)

It is known that γβ is an even function with compact support, say [−R,R], and
γβ(0) = 1 > |γβ(x)| for x 
= 0. To be consistent with the notation introduced
above, the optimal kernel ψβ on [0,1] is then pointwise defined by ψβ(x) =
γβ(2Rx − R). It is worth noting that the solution γβ only depends on the first
parameter β which shows that the procedure is automatically adaptive with re-
spect to the second parameter L. In case 0 < β ≤ 1, the solution of (2) is given
by γβ(x) = I {|x| ≤ 1}(1 − |x|β). For β > 1 an explicit solution is known only
for β = 2 [Leonov (1999)]. For details on how this function can be constructed
numerically, see Donoho (1994) and Leonov (1999).

3. Asymptotic power and adaptivity. In this section, the asymptotic power
of our test is investigated in case of independent identically distributed errors. The
asymptotic power of the above defined conditional test surely depends on the un-
known error distribution as well as the design regularity. The subsequent Theo-
rem 2 provides an extension of Lepski and Tsybakov’s (2000) lower bound for the
nonparametric regression setting with Gaussian errors to general symmetric error
distributions with finite Fisher information. Additionally, the result includes the
case of non-equidistant design points.

Let f denote the Lebesgue density of the error distribution. In order to for-
mulate the result on the asymptotic lower bound, let us introduce the following
assumptions:
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(E1) f is strictly positive and absolutely continuous on R with finite Fisher infor-
mation

I (f ) :=
∫ (

f ′(x)

f (x)

)2

f (x) dx.

The required positivity of the error density f in (E1) just ensures that for any
θ ∈ R, the shifted distribution Lθ (Yi) = L(εi + θ) is absolutely continuous with
respect to L0(Yi) = L(εi). Since we are dealing with noncontiguous alternatives,
we are in need of a slightly stronger assumption than differentiability in quadratic
mean, which would be equivalent to (E1).

(E2) There exists some positive constant δ0 such that we have the expansion∫ {(
f (z + θ)

f (z)

)1+δ

− 1
}
f (z) dz = 1

2
δ(1 + δ)θ2I (f )

(
1 + r(θ, δ)

)
with a sequence r(θ, δ) = O(1/ log(1/|θ |)) for |θ | → 0, uniformly in δ ∈
(0, δ0].

EXAMPLES. (i) (Normal distribution). If f denotes the Lebesgue density of
the N (0, σ 2)-distribution, then I (f ) = σ−2 and∫ {(

f (z + θ)

f (z)

)1+δ

− 1
}
f (z) dz = exp

(
{(1 + δ)2 − (1 + δ)} θ2

2σ 2

)
− 1

= 1

2
δ(1 + δ)θ2I (f )

(
1 + O(θ2)

)
for δ uniformly bounded from above.

(ii) (Double exponential distribution). Let f denote the density of the centered
double exponential distribution with parameter λ, that is, f (z) = 2−1λ exp(−λ|z|).
Simple calculations provide the expansion∫ {(

f (z + θ)/f (z)
)1+δ − 1

}
f (z) dz = 1

2δ(1 + δ)θ2λ2(
1 + O(θ)

)
,

for δ uniformly bounded from above, where λ2 = I (f ).

Via Taylor expansion of (1 + x)1+δ up to the second order and the theorem of
dominated convergence, assumption (E2) can be verified for several classical error
laws, in particular for the logistic distribution which is of exceptional interest in
the theory of rank tests. For any J ⊂ [0,1], let ‖ ·‖J denote the sup-norm restricted
on J , that is, ‖l‖J := supx∈J |l(x)|.

THEOREM 2. Let ρn := ((logn)/n)β/(2β+1) and define

d∗ :=
(

2L1/β

(2β + 1)I (f )‖γβ‖2
2

)β/(2β+1)

.
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Let the assumptions (D), (E1) and (E2) be satisfied. Then for arbitrary numbers
εn > 0 with limn→∞ εn = 0 and limn→∞(logn)1/2εn = ∞ we obtain

lim sup
n→∞

inf
l∈Hh(β,L):

‖l√h‖J ≥(1−εn)d∗ρn

Elφn(Y ) ≤ α

for any fixed nondegenerate interval J ⊂ [0,1] and arbitrary tests φn at signifi-
cance level ≤ α.

Even in the knowledge of both smoothness parameters (β,L) and the explicit
error distribution which is unrealistic for many practical purposes, for any test φn

of {0} at significance level α, there exists an alternative l with ‖l√h‖J ≥ (1 −
εn)d∗ρn which will not be detected with probability 1 − α − o(1) or larger. As
expected, the smaller the design density in some location, the more difficult it is to
detect there a deviation from zero.

The next theorem is about the asymptotic power of the multiscale signed rank
test, based on the kernel being the solution to the minimization problem (2). We
restrict our attention to Hölder alternatives with smoothness parameter β ≤ 1. Here
the resulting kernel ψβ is pointwise given by ψβ(x) = (1 − |2x − 1|β). For β > 1,
an explicit solution of (2) is known for β = 2 only; see above. For the sake of
simplicity, we consider compact subintervals of (0,1), which can be avoided by the
use of suitable boundary kernels similar to those in Lepski and Tsybakov (2000).

THEOREM 3. Let β ∈ (0,1]. Let φ∗
n denote the multiscale signed rank test

based on the kernel ψβ . Assume that the first derivative of the error den-
sity exists and is uniformly bounded and integrable. Denote furthermore ρn :=
((logn)/n)β/(2β+1) and

d∗ :=
(

2L1/β

(2β + 1)12(
∫

f (y)2 dy)2‖γβ‖2
2

)β/(2β+1)

.

Let assumption (D) be satisfied and suppose that the modulus of continuity
of the design density h is decreasing with at least logarithmic rate, that is,
sup|x−y|≤δ |h(x) − h(y)| = O(1/ log(1/δ)) as δ → 0. Then for arbitrary numbers

εn > 0 with limn→∞ εn = 0 and limn→∞(logn)1/2εn = ∞ we obtain

lim inf
n→∞ inf

l∈Hh(β,L):
‖l√h‖J ≥(1+εn)d∗ρn

Pl(φ
∗
n = 1) = 1

for any fixed compact interval J ⊂ (0,1).

The theorem says that if the underlying regression line l multiplied by the square
root of the design density deviates from {0} by at least (1 + εn)d

∗ρn, then the test
rejects the null hypothesis with probability close to 1. Note that the testing pro-
cedure does not require knowledge of the design density h. Via the choice of the
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optimal kernel function, the test depends on the smoothness parameter β , but in
contrast to the tests proposed by Lepski and Tsybakov (2000) it remains indepen-
dent of L.

RELATIVE ASYMPTOTIC EFFICIENCY. The ratio (d∗/d∗)(2β+1)/β may be in-
terpreted as lower bound for the relative asymptotic efficiency in the following
sense: Let (φn) be a sequence of arbitrary level-α tests for the simple hypothesis
l = 0. Let δn > 0 such that

lim inf
n→∞ inf

l∈Hh(β,L):
‖l√h‖J ≥δn

Elφn = α′ > α.

Let m(n) be (smallest possible) sample sizes such that

inf
l∈Hh(β,L):
‖l√h‖J ≥δn

Elφ
∗
m(n) ≥ α′.

Then under the conditions of Theorems 2 and 3,

lim inf
n→∞

n

m(n)
≥ (d∗/d∗)(2β+1)/β = 12

(∫
f (y)2 dy

)2/
I (f ).

In case of a Gaussian error density f = φ0,σ 2 , the former bound equals

12σ 2
(∫

φ0,σ 2(y)2 dy

)2

= 3

π
,

which is well known from the classical theory for the Wilcoxon test under the
assumption of constant alternatives. The existence of optimal tests for arbitrary
error densities f is yet an open problem. In case of homoscedastic Gaussian er-
rors, minimax optimal tests are provided by Dümbgen and Spokoiny (2001). Thus
one single test has relative asymptotic efficiency close to 1 with respect to an as-
ymptotically minimax optimal test under sup-norm loss for arbitrary Hölder alter-
natives Hh(β,L);L > 0. Sharp asymptotic adaptivity is attained in addition over
any range of Hölder classes Hh(β,L);L1 ≤ L ≤ L2, for some arbitrary constants
0 < L1 < L2 < ∞. This follows from the fact that the approximations in the proof
hold uniformly in L as long as L stays uniformly bounded away from 0 and ∞.

Sharp asymptotic adaptivity with respect to both parameters, β and L, is still an
open problem. Nevertheless, under the conditions of Theorems 2 and 3 we obtain
the following

THEOREM 4 (Rate-optimality). Let φn be the conditional multiscale signed
rank test at level α ∈ (0,1), based on some positive continuous kernel ψ of
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bounded total variation with
∫ 1

0 ψ(x)d(x) = 1. Then for arbitrary β > 0, L > 0,
there exist constants c(β,L,ψ) ≥ d∗(β,L) such that

lim inf
n→∞ inf

l∈Hh(β,L):
‖l√h‖[0,1]≥c(β,L,ψ)ρn

Pl(φn = 1) = 1.

ADAPTIVITY. Without the knowledge of the first parameter β , the test
achieves the optimal rate nevertheless. Note that φn depends neither on β nor on L.
The same considerations concerning the proof as indicated above show that if the
range of (β,L) is restricted to some compact subset [β1, β2]×[L1,L2] ⊂ (0,∞)2,
φn is rate-adaptive in the usual setting, that is,

lim inf
n→∞ inf

(β,L)∈[β1,β2]×[L1,L2]
inf

l∈Hh(β,L):
‖l√h‖[0,1]≥c(β,L,ψ)ρn

Pl(φn = 1) = 1.

REMARK [Nontrivial power along a sequence of local alternatives
(l/

√
n)n∈N]. In the literature, the power of a goodness-of-fit test is often in-

vestigated along a sequence of alternatives (l/
√

n)n∈N. Against such local (but
directed) alternatives, the proposed test has nontrivial power as well: If l is con-
tinuous with ‖l‖sup > 0, then there exists some compact subinterval J of [0,1]
with |l(x)| > τ > 0 for all x ∈ J and some constant τ > 0. The single test sta-
tistic |Tjk| − (2 log(n/(k − j)))1/2 with maximal distance |Xj − Xk| under the
constraint [Xj,Xk] ⊂ J detects a deviation from {0} with asymptotic probability
arbitrarily close to 1 for sufficiently large τ . Thus, the test is consistent against
local alternatives (anl)n∈N whenever an · √n → ∞.

4. Numerical examples. We illustrate the method with a sample of size
n = 100 and independent errors drawn from the Student law with three degrees
of freedom. The design points are equidistant Xi = i/n, and the test statistic is
based on the Epanechnikov kernel. Figure 1 shows the regression line with the
observations. The estimated quantiles of the conditional test statistic Tn given the
vector of ranks of the absolute observation values are based on 999 Monte Carlo
simulations. Here we obtained κ0.1(R) = 1.4171. Figure 2(a) presents the mini-
mal intervals of D0.1, visualized as horizontal line segments and ordered along
the y-axis in a place-saving manner. Figure 2(b) presents the minimal intervals of
rejection at the 0.1-level for an application of the multiscale test [Dümbgen and
Spokoiny (2001)], which is based on the idea of homoscedastic Gaussian errors
[the standardization by

√
3 = Var(Student3)1/2 included]. Based on 999 Monte

Carlo simulations as well, we found κ0.1 = 1.8187. The procedure detects a wrong
region [0.56,0.6].
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FIG. 1.

5. Extensions.

5.1. Parametric hypotheses. Suppose that the null hypothesis l ∈ {lθ |θ ∈ �}
for some parameter space � ⊂ R

d . If θ̂n denotes a
√

n-consistent estimator of the
unknown parameter, the above described procedure is supposed to be applied to
the vector of residuals, (Yi − lθ̂n

(Xi))
n
i=1. In case of equidistant design points and

the rectangular kernel, we conjecture that under sufficient regularity conditions
on θ̂n and the parametric model, the limit under the null hypothesis of Theorem 1
has the form

T0 := sup
0≤s<t≤1

{ |W(t) − W(s) + (g(t) − g(s))′Z|√
t − s

−
√

2 log
(
1/(t − s)

)}
,

with W a Brownian motion on the unit interval, some continuous R
d -valued func-

tion g and Z a d-variate standard normally distributed random vector. Z comes

FIG. 2.
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in via linear expansion of θ̂n. The additional estimation of the parameter does not
influence the additive correction. However, it destroys the finite sample validity of
the conditional test, and a bootstrap procedure may be applied as an approxima-
tion.

5.2. Sobolev alternatives. For β ∈ N and 1 ≤ p < ∞ with βp > 1, let

F (β,L;p) := {
l | l is absolutely continuous and

∥∥l(β)
∥∥
p ≤ L

}
,

where ‖ · ‖p denotes the Lp-norm. Replacing in the definition of ρn, hn and d∗
the constant β by γ := β − 1/p and using that Lh

γ
n l(·/hn) ∈ F (β,L;p) if l ∈

F (β,1;p), the results of Theorem 2 extend to Sobolev classes of alternatives as
long as the solution of (2) [with a Sobolov ball F (β,1;p) instead of H(β,1)] has
compact support and is of finite total variation. Theorem 3 can be modified in the
same way if in addition the corresponding solution of (2) is nonnegative—the final
argument in step 3 (proof of Theorem 3) may be replaced with a consideration
as in the proof of Theorem 4. The nonnegativity constraint, however, reduces the
range of possible Sobolev classes essentially to β = 1. An explicit solution in case
β = 1 and p > 2 has been derived by Sz. Nagy (1941), which satisfies the above
requirements in particular.

5.3. Random design. We conjecture that the design assumption (D) can be
extended to

(D′) There exists some constant c > 0 such that

lim inf
n→∞

Hn(bn) − Hn(an)

bn − an

≥ c

whenever 0 ≤ an < bn ≤ 1 and lim infn→∞ log(bn − an)/ logn > −1.

Here, Hn denotes the empirical distribution function of the design points. Note
that (D) implies (D′). The latter condition is satisfied in particular with probability
1 if X1, . . . ,Xn are the order statistics of n i.i.d. random variables with a density
which is bounded away from zero.

5.4. Multivariate design. A further perspective is the extension of the test to
two- or even multidimensional design. One application is to detect simultane-
ously objects on a surface of different shape and size. However, there is no nat-
ural class of subsets like intervals one has to look at. Additionally, computational
aspects play an increased role: In the univariate case the supremum is taken over
O(n2) single statistics. In two dimensions already, the choice of all rectangles
leads to O(n4).
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5.5. Error laws with point mass and nonsymmetric errors. If the errors are not
restricted to be Lebesgue-continuously distributed, define the local ranks

Rjk(i) :=
k∑

l=j

(
1{|Yl | < |Yi |} + 1{|Yl| = |Yi |}

2

)
+ 1

2
.

The resulting conditional test keeps the significance level.
When the assumption of symmetry is violated, the test is not valid anymore.

However, if it seems reasonable in some practical situation that at least Med(εi) =
0, i = 1, . . . , n, one may analyze the data with multiscale sign tests as used in
Dümbgen and Johns (2004) for the construction of confidence bands for isotonic
median curves. Such a multiscale sign test will be working in a more general set-
ting, but presumably with a considerable loss of efficiency in the Gaussian case.

6. Proofs.

PROOF OF THEOREM 1. Let us first introduce some notation. Let Tn :=
{(j, k)|1 ≤ j < k ≤ n} and define the process Xn on Tn pointwise by

Xn(j, k) := 1√
n

k∑
i=j

ψjk(Xi) sign(Yi)
Rjk(i)

k − j + 2
.

Since the error distribution is assumed to be symmetric, sign(εi) is stochastically
independent of |εi |. Consequently under the null hypothesis, the vector of signs
(sign(Yi))

n
i=1 is stochastically independent of the rank vector R = R1n. Moreover,

sign(εi) are i.i.d. Rademacher variables. For notational convenience we write ξi

for sign(εi).
The proof is partitioned as follows. In step 1, the conditions of Theorem 6.1 in

Dümbgen and Spokoiny (2001) are verified for the conditional process Xn given
the vector of ranks R. Second (step 2), the weak approximation of the conditional
process by a Gaussian process in probability is established.

Step 1. For any (j, k) ∈ Tn, let σ 2
n,R(j, k) denote the conditional variance

Var(Xn(j, k)|R). The sub-Gaussian tails of the conditional process Xn|R are an
immediate consequence of Hoeffding’s inequality:

P
(|Xn(j, k)| > σn,R(j, k)η|R)

= P

(∣∣∣∣∣
k∑

i=j

ψjk(Xi)ξi

Rjk(i)

k − j + 2

∣∣∣∣∣ >

(
k∑

i=j

ψ2
jk(Xi)

Rjk(i)
2

(k − j + 2)2

)1/2

η
∣∣∣R)

≤ 2 exp(−η2/2)

for any η > 0, uniformly over R and 1 ≤ j < k ≤ n. Let ρn be defined by

ρn((j, k), (j ′, k′))2 := |j − j ′|/n + |k − k′|/n.
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In order to show the sub-Gaussian increments of Xn|R with respect to ρn, it turns
out to be sufficient to consider pairs with j = j ′ = 1 and k < k′ = n, by the same
arguments as used in Dümbgen (2002). For any η > 0, an application of Hoeffd-
ing’s inequality yields

P

(
1√
n

∣∣∣∣∣
n∑

i=1

ψ1n(Xi)
R1n(i)

n + 1
ξi −

k∑
i=1

ψ1k(Xi)
R1k(i)

k + 1
ξi

∣∣∣∣∣ >
√

1 − k/nη
∣∣∣R)

≤ 2 exp
(−(1 − k/n)η2/(2B)

)
with

B = Var

(
1√
n

n∑
i=1

ψ1n(Xi)
R1n(i)

n + 1
ξi − 1√

n

k∑
i=1

ψ1k(Xi)
R1k(i)

k + 1
ξi

∣∣∣R)
.

First note that B ≤ 2B1 + 2B2, where

B1 = Var

(
1√
n

n∑
i=1

ψ1n(Xi)
R1n(i)

n + 1
ξi − 1√

n

k∑
i=1

ψ1k(Xi)
R1n(i)

n + 1
ξi

∣∣∣R)
(3)

and

B2 = Var

(
1√
n

k∑
i=1

ψ1k(Xi)
R1n(i)

n + 1
ξi − 1√

n

k∑
i=1

ψ1k(Xi)
R1k(i)

k + 1
ξi

∣∣∣R)
.(4)

Hence it is sufficient to show that Bi ≤ K(1−k/n) for i = 1,2 with some constant
K > 0 independent of R, k and n. Throughout this proof, K denotes a generic
positive constant depending only on ψ and the design density h. Its value may be
different in different expressions. Now

B1 = 1

n

k∑
i=1

(
ψ1n(Xi) − ψ1k(Xi)

)2 R1n(i)
2

(n + 1)2 + 1

n

n∑
i=k+1

ψ1n(Xi)
2 R1n(i)

2

(n + 1)2

(5)

≤ 1

n

k∑
i=1

(
ψ1n(Xi) − ψ1k(Xi)

)2 + K(1 − k/n).

For notational convenience, we denote the scale (Xk − X1) by t1k . The finite total
variation of ψ implies that ψ(x) = ∫

[0,x] g(u)dP (u) for all but at most countably
many numbers x ∈ [0,1], where P is some probability measure on [0,1] and g

is some measurable function with |g| ≤ TV(ψ). For 0 ≤ z1 ≤ z2 ≤ 1 let μ be de-
fined by μ([z1, z2]) := ∫ z2

z1
|g(x)|P(dx). Note that |ψ(z1) − ψ(z2)| ≤ μ([z1, z2]).

Let Hn denote the empirical distribution function of the design points and define

A(kn)
x :=

[
x − X1

t1n

,
x − X1

t1k

]
.
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The sum in (5) is then bounded by

1

n

k∑
i=1

(
ψ1n(Xi) − ψ1k(Xi)

)2(6)

= 1

n

k∑
i=1

{
ψ

(
(Xi − X1)/t1n

) − ψ
(
(Xi − X1)/t1k

)}2

≤
∫ Xk

X1

μ
(
A(kn)

x

)2
Hn(dx)

=
∫ {∫ Xk

X1

I
{
y ∈ A(kn)

x , z ∈ A(kn)
x

}
Hn(dx)

}
μ(dy)μ(dz)(7)

≤ K sup
y∈[0,1]

∫ Xk

X1

I
{
y ∈ A(kn)

x

}
Hn(dx)

≤ K sup
y∈[0,1]

(
Hn(yt1n + X1) − Hn(yt1k + X1)

)
,(8)

where equality (7) follows by an application of Fubini’s theorem. But the design
assumption (D) implies that H − 1/n ≤ Hn ≤ H pointwise. Therefore, the latter
supremum in (8) is bounded by

sup
y∈[0,1]

(
H(yt1n + X1) − H(yt1k + X1)

) + 1/n ≤ K

∫ Xn

Xk

h(x)λ(dx) + 1/n,

which is bounded from above by K(1 − k/n) for some constant K independent of
n and k. In order to bound B2 in (4), define R̃1k(i) := ∑n

l=k+1 I {|Yl| ≤ |Yi |}; thus
R1n(i) equals R1k(i) + R̃1k(i) a.s. Then

B2 ≤ 2

n

k∑
i=1

ψ1k(Xi)
2
(

k + 1

n + 1
− 1

)2 R1k(i)
2

(k + 1)2 + 2

n

k∑
i=1

ψ1k(Xi)
2 R̃1k(i)

2

(n + 1)2

≤ K(1 − k/n)2 + K
2

n

n∑
i=k+1

i2

(n + 1)2

≤ K(1 − k/n).

Consequently, Xn|R has sub-Gaussian increments with respect to ρn.
For some totally bounded pseudometric space (T , ρ), T ′ ⊂ T and any ε > 0,

the covering number N(ε,T ′, ρ) is defined as the infimum of �T0 over all T0 ⊂ T ′
such that inft0∈T0 ρ(t0, t) ≤ ε ∀t ∈ T ′. To finish step 1, we need to establish the
bound for the covering numbers,

N
(
(δu)1/2, {(j, k) ∈ Tn :σ(j, k)2

n,R ≤ δ}, ρn

) ≤ Au−2δ−1
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with a constant A > 0, independent of R and n. Since ψ is continuous with∫ 1
0 ψ(x)dx > 0, there exists some nondegenerate interval [a, b] ⊂ [0,1] with

ψ(x)2 ≥ τ for some strictly positive constant τ and any x ∈ [a, b]. Let Bjk :=
{i : (Xi − Xj)/tjk ∈ [a, b]}. By assumption (D),

�Bjk

n
=

∫ tjkb+Xj

tjka+Xj

dHn(x)

≥ H(tjkb + Xj) − H(tjka + Xj) − 1

n
≥ K

k − j − 1/K

n
.

This entails the lower bound

σn,R(j, k)2 ≥ 1

n

∑
i∈Bjk

τ
Rjk(i)

2

(k − j + 2)2

≥ τ

n

�Bjk∑
i=1

i2

(k − j + 2)2

= 1

n
τ
(�Bjk)(�Bjk + 1)(2�Bjk + 1)

6(k − j + 2)2 ≥ K
k − j − 1/K

n
,

with some constant K > 0, independent of R,k, j and n. Therefore,

N
(
(δu)1/2, {(j, k) ∈ Tn :σn,R(j, k)2 ≤ δ}, ρn

)
≤ N

(
(δu)1/2, {(j, k) ∈ Tn : (k − j)/n ≤ (δ + 1/n)/K}, ρn

)
.

If δ ≥ 1/n, then δ + 1/n ≤ 2δ, and via the embedding k �→ k/n of Tn into [0,1],
the covering number can be bounded by Au−2δ−1 for some constant A > 0 with
the same argument as given in Dümbgen and Spokoiny (2001). Note that the de-
sired bound is necessarily satisfied for δ ≤ 1/n: Then �{(j, k) ∈ Tn : (k − j)/n ≤
(δ + 1/n)/K} ≤ �{(j, k) ∈ Tn : (k − j) ≤ 2/K} ≤ 2K−1n ≤ 2K−1δ−1.

Step 2. Let Sn := {(Xi,Xj )|0 ≤ j < k ≤ n}, where X0 := 0. Redefine the
process Xn on Sn via

Xn(s, t) := 1√
n

∑
i∈Ist

ψst (Xi)ξi

Rst (i)

�Ist + 1
, (s, t) ∈ Sn,

where Ist := {i|Xi ∈ [s, t]} and Rst denotes the rank of |Yi | among the �Ist num-
bers |Yk| :Xk ∈ [s, t]. Furthermore, let the process Z on S := {(s, t)|0 ≤ s < t ≤ 1}
pointwise be defined by

Z(s, t) := 1√
3

∫ t

s
ψst (x)

√
h(x) dW(x), (s, t) ∈ S,
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with W some Brownian motion on the unit interval. In the sequel we prove the
weak convergence in probability of the conditional process under the null hypoth-
esis, that is,

dw

(
L(Xn|R),L(Z(s, t))(s,t)∈Sn

) −→p 0,

where dw denotes some metric generating the topology of weak convergence. It
follows by a standard chaining argument and the above established results that
uniformly over R and n, Xn|R is stochastically equicontinuous with respect to ρ,
pointwise defined by

ρ((s, t), (s′, t ′))2 := |H(s) − H(s′)| + |H(t) − H(t ′)|.
To prove the weak convergence in probability, it is therefore sufficient to show the
convergence of the finite-dimensional distributions of Xn|R. Let

φi,n(s, t) := 1√
n
I[s,t](Xi)ψst (Xi)ξi

Rst (i)

�Ist + 1
, (s, t) ∈ Sn.

Then Xn(s, t) = ∑n
i=1 φi,n(s, t), and the φi,n are independent conditioned on R.

One verifies that

E

(
n∑

i=1

‖φi,n‖2
Sn

∣∣∣R)
≤ ‖ψ‖2

sup

and for arbitrary u > 0,

E

(
n∑

i=1

I {‖φi,n‖2
Sn

> u}‖φi,n‖2
Sn

∣∣∣R)
= o(1).

For any natural number k, let now {(s1, t1), . . . , (sk, tk)|0 ≤ si < ti ≤ 1, i =
1, . . . , k} and Sk

n = {(s1n, t1n), . . . , (skn, tkn)} ⊂ Sn such that (sni, tni) → (si, ti)

for i = 1, . . . , k. For a given vector R of ranks, let us introduce the process ZnR

on Sn which is, conditioned on R, a centered Gaussian process with conditional
covariance structure as Xn|R, that is,

cov(ZnR(s, t),ZnR(s′, t ′)|R)
(9)

= 1

n

∑
i∈Ist∩Is′t ′

ψst (Xi)ψs′t ′(Xi)
Rst (i)

�Ist + 1

Rs′t ′(i)

�Is′t ′ + 1
.

Since the conditional covariance function of Xn|R is uniformly bounded by
±‖ψ‖2

sup, respectively, Lindeberg’s central limit theorem entails that

dw(L(Xn|Sk
n
|R),L(ZnR |Sk

n
|R)) → 0,

due to the compactness of [−‖ψ‖2
sup,‖ψ‖2

sup]. It remains to be shown that

dw(L(ZnR |Sk
n
|R),L(Zn|Sk

n
)) −→p 0.(10)
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Let (sn, tn) ∈ Sn with lim infn |sn − tn| > 0. Then∣∣∣∣ Rsntn(i)

�Isntn + 1
− (

F(|Yi |) − F(−|Yi |))∣∣∣∣
≤ sup

z

∣∣∣∣∣ 1

�Isntn + 1

∑
j∈Isntn

I {|Yj | ≤ |z|} − (
F(|z|) − F(−|z|))∣∣∣∣∣

and the latter quantity is op(1) by the Glivenko–Cantelli theorem. This shows that
for (sn, tn), (s

′
n, t

′
n) ∈ Sn with (sn, tn) → (s, t) ∈ S and (s ′

n, t
′
n) → (s′, t ′) ∈ S, (9)

is equal to

cov(Xn(sn, tn),Xn(s
′
n, t

′
n)|R)

= n−1
∑

i∈Isntn∩Is′nt ′n

ψsntn(Xi)ψs′
nt ′n(Xi)

(
F(|Yi |) − F(−|Yi |))2 + op(1).

The random variables sign(Yi){F(|Yi |) − F(−|Yi |)} = 2F(Yi) − 1, i = 1, . . . , n,
are independent and uniformly distributed on [−1,1]. Consequently, assumption
(D) and an application of Chebyshev’s inequality finally yields

cov(Xn(sn, tn),Xn(s
′
n, t

′
n)|R) −→p

1
3

∫
ψst (x)ψs′t ′(x)h(x) dx

which implies (10).
From steps 1 and 2 the asserted stochastically weak convergence of our test

statistic can be deduced with the same argument as given in Dümbgen (2002),
page 528. �

PROOF OF THEOREM 2. For a fixed smoothness class H(β,L), let γ = γβ be
the solution of the optimization problem (2). As pointed out in Section 2, γ is an
even function with compact support, say [−C,C]. Now define the following set of
testing functions: For a given bandwidth hn > 0 and any integer j let

γj,n(·) := γ

(
. − (2j − 1)Chn

hn

)
and define gj,n(·) := 1√

h(·)Lhβ
nγj,n.

[Note that h(·) denotes the design density whereas hn denotes the n-dependent
scale parameter.] Let [a, a + b] ⊂ J for some b > 0 and define

Jn := {j ∈ N : (2j − 1)Chn ∈ [a + Chn, a + b − Chn]}.
Let Gn := {gj,n : j ∈ Jn}. Note that g ∈ Hh(β,L) for every g ∈ Gn. Following the
arguments in Dümbgen and Spokoiny (2001), proof of Theorem 3.1a, one shows
that for any test φ : Rn → [0,1] with significance level ≤ α,

inf
g∈Gn

Egφ(X,Y ) − α ≤ E0

∣∣∣∣∣ 1

�Gn

∑
g∈Gn

dPg

dP0
(X,Y ) − 1

∣∣∣∣∣.
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The aim is to determine hn such that the right-hand side tends to zero as n goes
to infinity. Define the index set Ig := {i|g(Xi) > 0}. By construction, Ig ∩ Ig′ = ∅

for g 
= g′ and g,g′ ∈ Gn. Then for any g ∈ Gn, the likelihood ratio equals

dPg

dP0
(X,Y ) = ∏

i∈Ig

f (Yi − g(Xi))

f (Yi)
,

which shows that dPg/dP0(X,Y ), g ∈ Gn, are independent. Note that their ex-
pectation is not the same for every g. Using a standard truncation argument as in
Dümbgen and Walther (2008), proof of Lemma 10, it turns out to be sufficient to
find hn such that

inf
δ∈(0,δ0]

max
g∈Gn

1

(�Gn)δ
E0

((
dPg

dP0
(X,Y )

)1+δ)
(11)

= inf
δ∈(0,δ0]

max
g∈Gn

1

(�Gn)δ

n∏
i=1

{∫
f (y)

(
f (y − g(Xi))

f (y)

)1+δ

dy

}
→ 0

as n → ∞. Using the expansion of assumption (E2), (11) is equal to

inf
δ∈(0,δ0]

max
g∈Gn

1

(�Gn)δ

n∏
i=1

{
1 + 1

2
δ(1 + δ)I (f )g(Xi)

2(
1 + r(g(Xi), δ)

)}
.

But for hn sufficiently small, the latter expression is bounded by

inf
δ∈(0,δ0]

max
g∈Gn

exp
(
n1

2δ(1 + δ)I (f )‖g‖2
n,2

(
1 + r̄(g)

) − δ log(�Gn)
)
,(12)

using the series representation of the logarithm, where

‖g‖n,2 := 1

n

n∑
i=1

g(Xi)
2

and r̄(g) := supδ∈(0,δ0] supx∈[0,1] |r(g(x), δ)|. Furthermore,

1

n

n∑
i=1

gj,n(Xi)
2 −

∫
gj,n(x)2h(x) dx

= L2h2β
n

∑
i∈Igj,n

∫ Xi

Xi−1

(
γj,n(Xi)

2

h(Xi)
− γj,n(x)2

h(x)

)
h(x) dx

≤ L2h2β
n

∑
i∈Igj,n

sup
x∈[Xi−1,Xi ]

∣∣∣∣γj,n(Xi)
2

h(Xi)
− γj,n(x)2

h(x)

∣∣∣∣1

n
.

The last expression is of order O(h
2β
n n−1): Since the design density h is of

bounded total variation as well as uniformly bounded away from zero, also 1/h



1364 A. ROHDE

is of bounded total variation. In addition, γ is bounded and of bounded total vari-
ation (for β ≤ 1, γ is explicitly known and unimodal, while its first derivative
is Hölder-continuous in case β > 1). Consequently, TV(γ 2

j,n/h) ≤ K(TV(γ 2) +
TV(h)) < ∞ with some constant K independent of j and n, which shows that
‖gj,n‖2

n,2 = h
2β+1
n ‖γ ‖2

2(1 + O((hnn)−1). Thus (12) is bounded by

inf
δ∈(0,δ0]

max
g∈Gn

exp
(
n1

2δ(1 + δ)I (f )L2h2β+1
n ‖γ ‖2

2
(
1 + R(n,g)

)
(13)

− δ log(�Gn)
)
,

with a sequence R(n,g) of order O(max{(hnn)−1, r̄(g)}).
Let εn > 0 be arbitrary numbers with εn → 0 and εn

√
logn → ∞. Define the

bandwidth

hn :=
(

d∗ρn

L

)1/β

(1 − εn)
1/β,

which implies that supg∈Gn
R(n, g) in (13) is of order (logn)−1. By the choice of

Gn, �Gn ≥ b/(2Chn) − 1. Let δ = δn := εn. Then (13) is bounded by

exp
(
εn(1 + εn)(2β + 1)−1 logn(1 − εn)

(2β+1)/β

− εn(2β + 1)−1(logn − log logn) + o(1)
)

= exp
(
−1 + β

β
ε2
n

(
1 + O(εn)

)
logn + εn(2β + 1)−1 log logn + o(1)

)
,

which tends to zero as n goes to infinity. �

PROOF OF THEOREM 3. By virtue of the proof of Theorem 1, the conditional
process Xn|R satisfies the conditions of Theorem 6.1 of Dümbgen and Spokoiny
(2001) uniformly in R and n. This entails that there exists some constant C > 0
independent of n with κn

α(R) ≤ C, where κn
α(R) denotes the (1 − α)-quantile of

L(Tn|R) under the null hypothesis. Consequently,

Pl(φ
∗
n = 1) =

∫
Pl(Tn > κn

α(R)|R)dPl(R)

≥
∫

Pl(Tn > C|R)dPl(R) = Pl(Tn > C).

Furthermore, Pl(Tn > C) ≥ Pl(|Tjk| > C + √
2 log(n/(k − j))) for any 1 ≤ j <

k ≤ n. It is therefore sufficient to show that for any sequence ln ∈ Hh(β,L) with
maximal absolute value ‖ln

√
h‖sup ≥ d∗ρn(1+εn), there exists a sequence of pairs

(jn, kn) with 1 ≤ jn < kn ≤ n such that

lim inf
n→∞ Pln

(|Tjnkn | > C +
√

2 log
(
n/(kn − jn)

)) = 1.
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The proof is organized as follows: At first (step 1), the L2-approximation of the
numerator of Tjnkn by a sum of independent random variables is established. Sec-
ond (step 2), Taylor-type expansions of its expectation and variance are provided,
and the asymptotic power of our test is determined along sequences of alternatives
converging to zero at the fastest possible rate. Finally (step 3), we treat alternatives
converging to zero at a slow rate or staying uniformly bounded away from zero.

Step 1. Let In := {jn, . . . , kn} be an interval of indices with 1 ≤ jn < kn ≤ n

and �In = kn − jn + 1 → ∞. For notational convenience, denote ψn := ψjnkn and
Rn(i) := Rjnkn(i), i ∈ In. Let Sn be the (normalized) numerator of the single local
test statistic Tjnkn , that is,

Sn := 1√
�In

∑
i∈In

ψn(Xi) sign(Yi)
Rn(i)

�In + 1
(14)

a.s.= ∑
i∈In

∑
j∈In

1

�In + 1
sign(Yi)

ψn(Xi)√
�In

I {|Yj | ≤ |Yi |}.

In the sequel, we establish the approximation of Sn by a sum of independent
random variables which is up to Op(1/�In) its Hájek projection [see, e.g., van
der Vaart (1998)]. For that purpose the Hoeffding decomposition is applied.
With ci = cn,i := (�In)

−1/2ψn(Xi), let Aij := sign(Yi)ciI {|Yj | ≤ |Yi |} and define
Hij := Aij + Aji . Then

Sn
a.s.= ∑

i∈In

∑
j∈In:
j<i

1

�In + 1
Hij + ∑

i∈In

1

�In + 1
Aii.

With the definition

H̃ij := E(Sn|Yi, Yj ) − E(Sn|Yi) − E(Sn|Yj ) + E(Sn)

= Hij − E(Hij |Yi) − E(Hij |Yj ) + EHij

for i 
= j , we obtain the decomposition

Sn
a.s.= ∑

i∈In

∑
j∈In:
j<i

1

�In + 1
H̃ij

+ ∑
i∈In

(
Hii/2

�In + 1
+ ∑

j∈In:
j<i

1

�In + 1

(
E(Hij |Yi) + E(Hij |Yj ) − EHij

))

=: S(0)
n + S(1)

n ,
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where S
(0)
n and S

(1)
n are uncorrelated. Note that in particular EH̃ij = 0 and

cov(H̃ij , H̃kl) = 0 for (i, j) 
= (k, l). Consequently

Var
(
Sn − S(1)

n

) = 1

(�In + 1)2

∑
i∈In

∑
j∈In:j<i

Var(H̃ij )

≤ 1

(�In + 1)2

∑
i∈In

∑
j∈In:j<i

4c2
n,i

= O(1/�In),

since by construction, Var(H̃ij ) ≤ Var(Hij ). Furthermore, S
(1)
n is equal to∑

i∈In

ci

�In + 1
sign(Yi)

+ ∑
i,j∈In

j 
=i

ci

�In + 1
sign(Yi)

(
Fj (|Yi |) − Fj (−|Yi |))

+ ∑
i,j∈In

j 
=i

ci

�In + 1

{∫
R\[−|Yj |,|Yj |]

sign(y) dFi(y) − E(Hij )

}
,

where Fi denotes the distribution function of Yi . For any distribution function F ,
let G be pointwise defined on R

+ by G(t) := F(t) − F(−t−), with F(y−)

the limit on the left, that is, limx↗y F (x). We denote F̄ := 1/(�In)
∑

i∈In
Fi ,

Ḡ(t) := F̄ (t) − F̄ (−t−) and F̄ ψ := 1/(�In)
∑

i∈In
ψn(Xi)Fi . Then E(S

(1)
n −

Ŝn)
2 = O(1/�In), with

Ŝn := 1√
�In

∑
i∈In

{
ψn(Xi) sign(Yi)Ḡ(|Yi |)

+
∫

R\[−|Yi |,|Yi |]
sign(y) dF̄ ψ(y)(15)

− E

∫
R\[−|Yi |,|Yi |]

sign(y) dF̄ ψ(y)

}
.

Step 2. For two functions f and g in L2[0,1], let

〈f,g〉In := 1/(�In)
∑
i∈In

f (Xi)g(Xi)

and let ‖f ‖In,2 := 〈f,f 〉1/2
In

denote the corresponding norm. Let (ln) be a sequence
of alternatives. If M(ln) denotes the maximal point of |ln|, let (Xjn,Xkn) be the
design points which are closest to M(ln)−hn and M(ln)+hn, respectively, where



ADAPTIVE SIGNED RANK TESTS 1367

hn := (δn/L)1/β with δn := d∗ρn(1 + εn). Symmetry considerations show that we
may assume without loss of generality that ln is positive at M(ln). Besides the
restriction ‖ln

√
h‖sup ≥ d∗ρn(1 + εn), it is assumed in this paragraph that

‖ln‖sup/ρn = O(1),(16)

which is equivalent to ‖ln
√

h‖sup/ρn = O(1). Note that (16) implies
√

�In ×
‖ln‖2

In,2 = o(1).

Our first goal is to show that

Eln Ŝn√
Varln Ŝn

= √
12

√
�In

〈ψn, ln〉In

‖ψn‖In,2

∫
f (y)2 dy + o(1)(17)

for any sequence (ln) satisfying (16). The symmetry of the error distribution
around zero and the boundedness of the first derivative f ′ provide the expansion

sign(Yi)Ḡ(|Yi |)

= sign(Yi)

{(
F(|Yi |) − F(−|Yi |))

− (
f (|Yi |) − f (−|Yi |))

(
1

�In

∑
j∈In

ln(Xj )

)
+ Ounif(‖ln‖2

In,2)

}

= (
2F(Yi) − 1

) + Ounif(‖ln‖2
In,2).

Here and in what follows, a sequence of random variables (Zn) is Ounif(cn) with
a sequence of positive numbers (cn), if lim supn |Zn/cn| ≤ c < ∞ with some non-
random nonnegative constant c. In order to treat the expectation

Eln Ŝn = 1√
�In

∑
i∈In

ψn(Xi)

{∫ (
2F(y) − 1

)
dFi(y) + O(‖ln‖2

In,2)

}
,

first observe that for any θ ∈ R,
∫
R
(2F(y) − 1)f (y + θ) dy = ∫

R
f ′(t) ×∫ t

t−θ (2F(y) − 1) dy dt , using Fubini’s theorem and the symmetry of the error
density f . Taylor expansion of the inner integral entails that

Eln Ŝn = √
�In〈ψn, ln〉In

{
−

∫ (
2F(y) − 1

)
f ′(y) dy

}
+ √

�InO(‖ln‖2
In,2)

(18)

= 2
√

�In〈ψn, ln〉In

{∫
f (y)2 dy

}
+ √

�InO(‖ln‖2
In,2),

where the last equality is obtained via partial integration. Furthermore,

Varln

(
1√
�In

∑
i∈In

ψn(Xi) sign(Yi)Ḡ(|Yi |)
)

(19)

= 1

�In

∑
i∈In

ψn(Xi)
2
Eln

(
2F(Yi) − 1

)2 + O(‖ln‖2
In,2).
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In order to bound the variance of the second part in the approximation (15), namely

Varln

(
1√
�In

∑
i∈In

∫
R\[−|Yi |,|Yi |]

sign(y) dF̄ ψ(y)

)
(20)

≤ 1

�In

∑
i∈In

Eln

(∫
R\[−|Yi |,|Yi |]

sign(y) dF̄ ψ(y)

)2

,(21)

note that by the symmetry of sign(·) and Fubini’s theorem,∣∣∣∣∫ [−z,z]c
sign(y) dF̄ ψ(y)

∣∣∣∣
=

∣∣∣∣∣ 1

�In

∑
i∈In

ψn(Xi)

∫
R

f ′(t)
∫

[−z,z]c
− sign(y)I {y ∈ [t, t + ln(Xi)]}dy dt

∣∣∣∣∣
≤ 〈ψn, |ln|〉In

∫
R

|f ′(t)|dt.

This shows that (20) is O(‖ln‖2
In,2) by Cauchy–Schwarz. Furthermore,∫

R

(
2F(y) − 1

)2
d
(
Fi(y) − F(y)

)
=

∫
R

(
2F(y) − 1

)2
∫ y

y−ln(Xi)
−f ′(t) dt dy

=
∫

R

f ′(t)
∫ t+ln(Xi)

t
−(

2F(y) − 1
)2

dy dt

= ln(Xi)

∫
R

4f (t)2(
2F(t) − 1

)
dt + O(ln(Xi)

2),

where the latter integral is equal to zero by the symmetry of the error distribution.
This finally gives together with (19) and the bound of (20)

Varln Ŝn = 4
12‖ψn‖2

In,2 + O(‖ln‖2
In,2).(22)

Note at this point that Varln Ŝn is uniformly bounded from above and from below.
Thus the combination of (18) and (22) entails (17) for any sequence (ln) satisfy-
ing (16).

In the next step, it will be shown that the denominator of Tjnkn is a sufficiently
good approximation for the standard deviation of Ŝn under the sequence of alter-
natives ln. Remember that it is the conditional standard deviation given the vec-
tor of ranks of the numerator under the null hypothesis. Using the representation
Rn(i) = ∑

k∈In
I {|Yk| ≤ |Yi |} a.s., one verifies that

Eln

(
1

�In

∑
i∈In

ψn(Xi)
2 Rn(i)

2

(�In + 1)2

)
= 4

12
‖ψn‖2

In,2 + O(‖ln‖2
In,2),
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and analogously for i, j ∈ In with i 
= j

Eln

(
Rn(i)

2

(�In + 1)2

Rn(j)2

(�In + 1)2

∣∣∣Yi, Yj

)
= Ḡ(|Yi |)2Ḡ(|Yj |)2 + Ounif(1/�In)

and

Varln

(
1

�In

∑
i∈In

ψn(Xi)
2 Rn(i)

2

(�In + 1)2

)
= O(1/�In),

which by Chebyshev’s inequality shows in particular that under condition (16)

√
�In

〈ψn, ln〉In

‖ψn‖In,2

∣∣∣∣∣
√

Varln Ŝn

/(
1

�In

∑
i∈In

ψn(Xi)
2 Rn(i)

2

(�In + 1)2

)1/2

− 1

∣∣∣∣∣
(23)

= oPln
(1).

Since Ḡ(·) is uniformly bounded by 1, the Lindeberg condition is easily verified for
Ŝn. Then Lindeberg’s central limit theorem yields in combination with the result
from step 1, (17) and (23)

Pln

(
Tjnkn > C +

√
2 log(n/�In)

)
= 1 − �

(
C +

√
2 log(n/�In) − √

12
√

�In

〈ψn, ln〉In

‖ψn‖In,2

∫
f (y)2 dy

)
+ o(1),

with � the standard normal distribution function. It remains to be shown that
√

12
√

�In

〈ψn, ln〉In

‖ψn‖In,2

∫
f (y)2 dy −

√
2 log(n/�In) → ∞(24)

as n goes to infinity under the constraints ‖ln
√

h‖sup ≥ d∗ρn(1 + εn) and (16).
Under the assumptions about the kernel ψ and the design density h, arguments

involving bounded total variation of ψ and h yield the approximation

√
12

√
�In

〈ψn, ln〉In

‖ψn‖In,2

∫
f (y)2 dy −

√
2 log(n/�In)

(25)

= √
12

√
n
〈ψn, ln

√
h〉

‖ψn‖2

∫
f (y)2 dy −

√
2 log

(
n/(�In)

) + o(1).

Let ψ(n) be the kernel rescaled to the interval [M(ln) − hn,M(ln) + hn]. Then

〈ψn, ln
√

h〉
‖ψn‖2

= 〈ψ(n), ln
√

h〉
‖ψ(n)‖2

(
1 + O((nhn)

−1)
)
,

using that Xjn − (M(ln) − hn) = O(n−1) and Xkn − (M(ln) + hn) = O(n−1) by
assumption (D). But δnψ

(n) by its construction as well as ln
√

h are elements of
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H(β,L). Then as in Dümbgen and Spokoiny (2001), a convexity argument yields
the inequality

δ−1
n

〈δnψ
(n), ln

√
h〉

‖ψ(n)‖2
≥ δ−1

n ‖δnψ
(n)‖2

2

‖ψ(n)‖2
= δn

√
hn‖γβ‖2.(26)

One verifies that
√

12
√

n

(∫
f (y)2 dy

)
δn

√
hn‖γβ‖2

(
1 + O((nhn)

−1)
) −

√
2 log(1/hn) + o(1)

≥ εn

(
2/(2β + 1)

)1/2
√

logn + o(1) → ∞
and therefore (24) follows in combination with (25) and (26).

Step 3. Suppose now that there exists a sequence (ln) with

lim inf
n→∞ Pln

(
Tjnkn > C +

√
2 log(n/�Ijnkn)

) = c < 1,

where the indices jn, kn are chosen as in step 2. This implies the existence of a sub-
sequence [for simplicity also denoted by (ln)] without any subsubsequence having
the property (16); that is, we may assume ‖ln‖sup/ρn → ∞. We will conclude the
proof via contradiction as follows: For any subsequence of a sequence (ln) satis-
fying ‖ln‖sup/ρn → ∞, there exists a subsubsequence which either converges to
zero at a slow rate or whose maximal absolute value stays uniformly bounded away
from zero. Hence we need to show that in both cases, our test attains asymptotic
power 1.

Note that the squared denominator of Tjnkn is bounded by ‖ψ‖2
sup, while

Varln(Ŝn) is uniformly bounded. Using again the approximation of the numera-
tor by Ŝn, we obtain

ElnTjnkn −
√

2 log(n/�In)
(27)

≥ ‖ψ‖−1
supEln Ŝn −

√
2 log(n/�In) + o(1).

If there exists a sequence (ln) with the property ‖ln‖sup/ρn → ∞ but which con-
verges to zero,

Eln Ŝn = 2
√

�In〈ψn, ln〉In

{∫
f (y)2 dy

}
+ √

�InO(‖ln‖2
In,2),(28)

as seen in step 2. But then the first term dominates in order the second one as well
as the logarithmic correction which shows that the right-hand side in (27) goes to
infinity.

Otherwise, assume that (ln) stays uniformly bounded away from zero. First ob-
serve that with l̄n := 1/(�In)

∑
i∈In

ln(Xi), |ln(Xi) − l̄n(Xi)| ≤ L|Xjn − Xkn |β =
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O(h
β
n). Taylor expansion around l̄n up to the first order provides the approximation

Eln Ŝn = 1√
�In

∑
i∈In

ψn(Xi)

{∫ (
F̄

(
y + ln(Xi)

) − F̄
(−y − ln(Xi)

))
f (y) dy

}

= 1√
�In

∑
i∈In

ψn(Xi)

{∫ (
F(y) − F(−y − 2l̄n)

)
f (y) dy + O(hβ

n)

}

= El̄n
Ŝn + O(n1/2hβ+1/2

n ).

If l̄n is uniformly bounded away from zero, El̄n
Ŝn is of order not smaller than

O(
√

nhn) which dominates in order the approximation error |El̄n
Ŝn − Eln Ŝn| as

well as the logarithmic correction. �

PROOF OF THEOREM 4. By virtue of the proof of Theorem 3, it remains
to be shown that (i) there exists some positive constant C = C(β,L,ψ), such
that (24) goes to infinity for alternatives ln with Kρn ≥ ‖ln

√
h‖sup ≥ Cρn for

any constant K > C and (ii) Eln Ŝn goes to infinity whenever ‖ln‖sup/ρn → ∞.
To this aim, we establish the following: If l ∈ H(β,L) with ‖l‖sup ≤ 1 and
x∗ := arg maxx∈[0,1] |l(x)|, then there exist some constant c = c(β,L) > 0 and
a closed interval I (l) ⊂ [0,1] such that λ(I (l)) ≥ c|l(x∗)|1/β and

|l(x)| ≥ 1
2 |l(x∗)| for every x ∈ I (l).(29)

Note that this is obviously correct in case β ≤ 1 with c = 1/(2L). For β > 1,
let �β� denote the largest integer strictly smaller than β . Let l ∈ H(β,L) with
‖l‖sup = D > 0. Taylor expansion around any point y ∈ [0,1] provides the ap-
proximation

l(x) = l(y) + (x − y)l′(y) + · · · + (x − y)�β�

k! l(�β�)(y) + Rl(x, y)

with |Rl(x, y)| ≤ L|x − y|β(≤ L). Thus,∣∣∣∣(x − y)l′(y) + · · · + (x − y)�β�

k! l(�β�)(y)

∣∣∣∣ ≤ 2D + L.(30)

LEMMA. There exists a universal constant K = Kd such that for any polyno-
mial P of degree d > 0, say P(x) = ∑d

k=0 akx
k , and ‖P‖[0,1] ≤ D > 0, it holds

true that supk=0,...,d |ak| ≤ Kd · D.

The lemma results from the fact that, for the polynomial P(x) = ∑d
k=0 akx

k ,
‖P‖(1) = ‖P‖[0,1] and ‖P‖(2) = max0≤k≤d |ak| are two norms in the (d + 1)-
dimensional space of polynomials of degree d , and these norms are equivalent.
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Its application implies together with the bound (30) that there exists a con-
stant K = K(β) such that |l(x) − l(x∗)| ≤ ‖l′‖sup|x − x∗| ≤ K(2D + L)|x −
x∗|. Then |l(x)| ≥ 1/2|l(x∗)| on [x∗ − D/(4KD + 2KL),x∗ + D/(4KD +
2KL)] ∩ [0,1]. If now ln ∈ H(β,L) with ‖ln‖sup = δn ≤ 1, then at least [x∗ −
2−1δ

1/β
n , x∗] or [x∗, x∗ + 2−1δ

1/β
n ] is fully contained in [0,1]. Assume with-

out loss of generality that [x∗, x∗ + 2−1δ
1/β
n ] ⊂ [0,1]. Then gn is defined by

gn(x) := 2βδ−1
n ln(2−1δ

1/β
n x + x∗) for x ∈ [0,1] is element of H(β,L) with

‖gn‖sup = gn(0) = 2β . Thus the above lemma finally implies that |ln(x)| ≥ δn/2

on [x∗, x∗ + 1/(8K + 4K2−βL)δ
1/β
n ].

The assumption about ψ implies that there exists some interval [c, d] ⊂
(0,1) on which ψ(x) ≥ δ for some strictly positive constant δ. We first ver-
ify the claim (i). For any alternative ln, let ψn be the kernel rescaled onto
the interval [Xjn,Xkn], where the design points Xjn < Xkn are those which
are closest to the endpoints of I (ln

√
h). Let In := {i :Xi ∈ I (ln

√
h)}. Then

〈ψn, ln
√

h〉In is of order not smaller than ‖ln
√

h‖sup, which implies the ex-
istence of a universal constant C = C(β,L,ψ) such that (24) goes to infin-
ity for ‖ln

√
h‖sup ≥ Cρn and ‖ln‖sup/ρn = O(1). The same consideration also

shows that (28) goes to infinity whenever ‖ln‖sup/ρn → ∞ and ‖ln‖sup → 0,
because ‖ln

√
h‖sup dominates in order ‖ln‖2

In,2 as well. To verify (ii), note that

‖ln
√

h‖sup/(4K‖ln
√

h‖sup + 2KL) stays uniformly bounded away from zero and
infinity as soon as ‖ln‖sup is uniformly bounded away from zero. Thus in the lat-
ter case, there always exists an interval I (ln

√
h) with lim infn→∞ λ(I (ln

√
h)) > 0

and |ln(Xi)
√

h(Xi)| ≥ ‖ln
√

h‖sup/2 for every Xi ∈ I (ln
√

h). With In := {i|Xi ∈
I (ln

√
h)}

Sn = 1√
�In

∑
i∈In

ψn(Xi) sign(Yi)
Eln(Rn(i)| sign(Yi))

�In + 1

+ 1√
�In

∑
i∈In

ψn(Xi) sign(Yi)
Rn(i) − Eln(Rn(i)| sign(Yi))

�In + 1
.

If ln(Xi) is uniformly bounded away from zero for every i ∈ In, the absolute
expectation of first term is of order O(

√
n), while the second term is Op(1).

�

Acknowledgments. The present work is part of my Ph.D. thesis. I sincerely
thank my supervisor Lutz Dümbgen for his constant encouragement and support.
Furthermore, I am grateful to the Co-Editor Jianqing Fan, an Associate Editor and
two referees for many suggestions which lead to a substantial improvement of this
article.



ADAPTIVE SIGNED RANK TESTS 1373

REFERENCES

DONOHO, D. L. (1994). Statistical estimation and optimal recovery. Ann. Statist. 22 238–270.
DÜMBGEN, L. (2002). Application of local rank tests to nonparametric regression. J. Nonparametr.

Statist. 14 511–537. MR1929210
DÜMBGEN, L. and JOHNS, R. B. (2004). Confidence bands for isotonic median curves using sign-

tests. J. Comput. Graph. Statist. 13 519–533. MR2063998
DÜMBGEN, L. and SPOKOINY, V. G. (2001). Multiscale testing of qualitative hypotheses. Ann.

Statist. 29 124–152. MR1833961
DÜMBGEN, L. and WALTHER, G. (2008). Multiscale inference about a density. Ann. Statist. 36. To

appear.
ERMAKOV, M. S. (1990). Minimax detection of a signal in a white Gaussian noise. Theory Probab.

Appl. 35 667–679. MR1090496
EUBANK, R. L. and HART, J. D. (1992). Testing goodness-of-fit in regression via order selection

criteria. Ann. Statist. 20 1412–1425. MR1186256
FAN, J. (1996). Test of significance based on wavelet thresholding and Neyman’s truncation. J. Amer.

Statist. Assoc. 91 674–688. MR1395735
FAN, J. and HUANG, J.-S. (2001). Goodness-of-fit tests for parametric regression models. J. Amer.

Statist. Assoc. 96 640–652. MR1946431
FAN, J., ZHANG, C. and ZHANG, J. (2001). Generalized likelihood ratio statistics and Wilks phe-

nomenon. Ann. Statist. 29 153–193. MR1833962
HÁJEK, J. and S̆IDAK, Z. (1967). Theory of Rank Tests. Academic Press, New York.
HART, J. D. (1997). Nonparametric Smoothing and Lack-of-Fit Tests. Springer, New York.
HOROWITZ, J. and SPOKOINY, V. (2001). An adaptive, rate-optimal test of a parametric mean-

regression model against a nonparametric alternative. Econometrica 69 599–631. MR1828537
HOROWITZ, J. and SPOKOINY, V. (2002). An adaptive, rate-optimal test of linearity for median

regression models. J. Amer. Statist. Assoc. 97 822–835. MR1941412
INGSTER, Y. I. (1982). Minimax nonparametric detection of signals in white Gaussian noise. Prob-

lems Inform. Transmission 18 130–140. MR0689340
INGSTER, Y. I. (1987). Minimax testing of nonparametric hypotheses on a distribution density in

Lp-metrics. Theory Probab. Appl. 31 333–337.
INGSTER, Y. I. (1993). Asymptotically minimax hypothesis testing for nonparametric alternatives. I–

III. Math. Methods Statist. 2 85–114, 171–189, 249–268. MR1257978 MR1257983 MR1259685
LEDWINA, T. and KALLENBERG, W. C. M. (1995). Consistency and Monte Carlo simulation of a

data-driven version of smooth goodness-of-fit tests. Ann. Statist. 23 1594–1608. MR1370299
LEDWINA, T. (1994). Data-driven version of Neyman’s smooth test of fit. J. Amer. Statist. Assoc. 89

1000–1005. MR1294744
LEONOV, S. L. (1999). Remarks on extremal problems in nonparametric curve estimation. Statist.

Probab. Lett. 43 169–178. MR1693289
LEPSKI, O. V. (1993). On asymptotically exact testing of nonparametric hypotheses. CORE Discus-

sion Paper No. 9329, Univ. Catholique de Louvain.
LEPSKI, O. V. and TSYBAKOV, A. B. (2000). Asymptotically exact nonparametric hypothesis test-

ing in sup-norm and at a fixed point. Probab. Theory Related Fields 117 17–48. MR1759508
SPOKOINY, V. (1996). Adaptive hypothesis testing using wavelets. Ann. Statist. 24 2477–2498.

MR1425962
SPOKOINY, V. (1998). Adaptive and spatially adaptive testing a nonparametric hypothesis. Math.

Methods Statist. 7 254–273. MR1651777
SZ. NAGY, B. (1941). Über Integralungleichungen zwischen einer Funktion und ihrer Ableitung.

Acta Sci. Math. 10 64–74. MR0004277

http://www.ams.org/mathscinet-getitem?mr=1929210
http://www.ams.org/mathscinet-getitem?mr=2063998
http://www.ams.org/mathscinet-getitem?mr=1833961
http://www.ams.org/mathscinet-getitem?mr=1090496
http://www.ams.org/mathscinet-getitem?mr=1186256
http://www.ams.org/mathscinet-getitem?mr=1395735
http://www.ams.org/mathscinet-getitem?mr=1946431
http://www.ams.org/mathscinet-getitem?mr=1833962
http://www.ams.org/mathscinet-getitem?mr=1828537
http://www.ams.org/mathscinet-getitem?mr=1941412
http://www.ams.org/mathscinet-getitem?mr=0689340
http://www.ams.org/mathscinet-getitem?mr=1257978
http://www.ams.org/mathscinet-getitem?mr=1257983
http://www.ams.org/mathscinet-getitem?mr=1259685
http://www.ams.org/mathscinet-getitem?mr=1370299
http://www.ams.org/mathscinet-getitem?mr=1294744
http://www.ams.org/mathscinet-getitem?mr=1693289
http://www.ams.org/mathscinet-getitem?mr=1759508
http://www.ams.org/mathscinet-getitem?mr=1425962
http://www.ams.org/mathscinet-getitem?mr=1651777
http://www.ams.org/mathscinet-getitem?mr=0004277


1374 A. ROHDE

VAN DER VAART, A. (1998). Asymptotic Statistics. Cambridge Univ. Press. MR1652247

WEIERSTRASS-INSTITUT FÜR

ANGEWANDTE ANALYSIS UND STOCHASTIK

MOHRENSTRASSE 39
D-10117 BERLIN

GERMANY

E-MAIL: rohde@wias-berlin.de

http://www.ams.org/mathscinet-getitem?mr=1652247
mailto:rohde@wias-berlin.de

	Introduction
	The multiscale signed rank statistic
	Asymptotic power and adaptivity
	Numerical examples
	Extensions
	Parametric hypotheses
	Sobolev alternatives
	Random design
	Multivariate design
	Error laws with point mass and nonsymmetric errors

	Proofs
	Acknowledgments
	References
	Author's Addresses

