The Annals of Statistics

On the asymptotic performance of median smoothers in image analysis and nonparametric regression

Inge Koch

Full-text: Open access


For d-dimensional images and regression functions the true object is estimated by median smoothing. The mean square error of the median smoother is calculated using the framework of M-estimation, and an expression for the asymptotic rate of convergence of the mean square error is given. It is shown that the median smoother performs asymptotically as well as the local mean. The optimal window size and the bandwidth of the median smoother are given in terms of the sample size and the dimension of the problem. The rate of convergence is found to decrease as the dimension increases, and its functional dependence on the dimension changes when the dimension reaches 4.

Article information

Ann. Statist., Volume 24, Number 4 (1996), 1648-1666.

First available in Project Euclid: 17 September 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62G07: Density estimation 62G20: Asymptotic properties 62G35: Robustness

Median smoother asymptotic optimality $M$-estimation


Koch, Inge. On the asymptotic performance of median smoothers in image analysis and nonparametric regression. Ann. Statist. 24 (1996), no. 4, 1648--1666. doi:10.1214/aos/1032298289.

Export citation


  • Bloomfield, P. and Steiger, W. L. (1983). Least Absolute Deviations: Theory, Applications, and Algorithms. Birkh¨auser, Boston.
  • Bovik, A. C., Huang, T. S. and Munson, D. C. (1987). The effect of median filtering on edge estimation and detection. IEEE Trans. Pattern Anal. Machine Intell. 9 181-194.
  • Chung, K. L. (1974). A Course in Probability Theory. Academic Press, London.
  • Cram´er, H. (1946). Mathematical Methods of Statistics. Princeton Univ. Press.
  • Eubank, R. L. (1988). Spline Smoothing and Nonparametric Regression. Dekker, New York.
  • Gallagher, N. C. and Wise, G. L. (1981). A theoretical analysis of the properties of median filters. IEEE Trans. Acoust., Speech, Signal Processing. 29 1136-1141.
  • H¨ardle, W. and Gasser, T. (1984). Robust non-parametric function fitting. J. Roy. Statist. Soc. Ser. B 46 242-251.
  • Huang, T. S. (1981). Two-Dimensional Signal Processing: Transforms and Median Filters. Springer, New York.
  • Huber, P. J. (1964). Robust estimation of a location parameter. Ann. Math. Statist. 35 73-101.
  • Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York.
  • Pollard, D. (1990). Empirical Processes: Theory and Applications. IMS, Hay ward, CA.
  • Priestley, M. B. and Chao, M. T. (1972). Non-parametric function fitting. J. Roy. Statist. Soc. Ser. B 34 385-392.
  • Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics. Wiley, New York.
  • Yang, G. J. and Huang, T. S. (1981). The effect of median filtering on edge location estimation. Computer Graphics and Image Processing 15 224-245.