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ON THE ASYMPTOTIC PERFORMANCE OF MEDIAN
SMOOTHERS IN IMAGE ANALYSIS AND

NONPARAMETRIC REGRESSION
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For d-dimensional images and regression functions the true object is
estimated by median smoothing. The mean square error of the median
smoother is calculated using the framework of M-estimation, and an ex-
pression for the asymptotic rate of convergence of the mean square error
is given. It is shown that the median smoother performs asymptotically as
well as the local mean. The optimal window size and the bandwidth of the
median smoother are given in terms of the sample size and the dimension
of the problem. The rate of convergence is found to decrease as the dimen-
sion increases, and its functional dependence on the dimension changes
when the dimension reaches 4.

1. Introduction. For regression models of the form

Yi =m�xi� + εi for i = 1; : : : ; n;(1.1)

where m denotes the true curve and the εi denote independent errors, Priest-
ley and Chao (1972) suggested the use of the linear estimator m∗n given by

m∗n�x� =
n∑
i=1

αi�x�Yi

for weights αi�x� derived from a kernel function. A weighted M-estimator ap-
proach for solving the regression problem (1.1) has been suggested by Härdle
and Gasser (1984). In their approach the unknown function m in (1.1) is esti-
mated by mn, where mn�x� is a zero of the function Hn given by

Hn�x; ·� =
n∑
i=1

αi�x�ψ�Yi − ·�(1.2)

for a suitably chosen function ψ.
The method proposed by Härdle and Gasser presupposes that the function

ψ of (1.2) has a bounded derivative ψ′ and that ψ′�0� is positive; thus their
permissible set of functions ψ includes the mean smoother, for example.

The aim of this paper is to estimate the unknown function m in (1.1) us-
ing median smoothing and to show that, asymptotically, median smoothing
performs as well as mean smoothing. The median smoother is known to be
more robust than the mean, but since its “ψ”-function [see (1.2)] is not differ-
entiable, the methods of Härdle and Gasser do not apply directly. In the ap-
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proach we adopt, we choose a family of smooth M-estimators which converge
to the median smoother. Thus instead of considering a single estimator and its
asymptotic behaviour as the sample size increases, we deal with a family ofM-
estimators simultaneously. Our results describe the asymptotic mean square
error as the sample size increases and as the M-estimators approximate the
median smoother, and from this we are able to determine the asymptotic mean
square error of the median smoother. The standard with which we compare
our results is the rate of convergence of the mean smoother. To obtain this
rate of convergence for the median smoother as well, the rate of convergence
of our smooth M-estimators to the median has to be chosen carefully; if the
rate is too slow, bias increases too much.

Apart from its importance in robust estimation, median smoothing, or me-
dian filtering, as it is more commonly referred to in the engineering literature,
has become an important tool in image analysis. It is regarded as particularly
valuable as a means of detecting and preserving edges and of filtering out
impulses [see Gallagher and Wise (1981), Yang and Huang (1981) and Bovik,
Hang and Munson (1987)].

Mathematically, d-dimensional images distorted by additive random noise,
as obtained in picture transmission, have the same form as d-dimensional re-
gression models. The parameter of interest in the smoothing problem, however,
is different. In image analysis the window size of the smoother is important,
while the bandwidth is the parameter of interest in regression models. These
two parameters are closely connected, and this fact allows us to treat both
problems simultaneously.

The paper is organized in the following way: in Section 2 we describe our
model and the family of M-estimators approximating the median. In Section 3
we present the results for our approximatingM-estimators (Propositions 2 and
3) and in Theorem 4 we derive the rate of convergence for the mean square
error of the median. Corresponding results for the mean estimator are also
given in this section. Section 4 contains some examples and a discussion of
our results. Proofs are deferred to Section 5.

2. Image models and the median smoother.

The true image or regression function T. We assume that the true image is
a deterministic real-valued function T which is defined on the compact region
Jd = �−1;1�d, d ≥ 1.

Let ∇ denote differentiation with respect to x ∈ Rd, x = �x�i�; i = 1; : : : ; d�:
for any g defined on Rd which is twice differentiable, let

∇g =
(

∂

∂x�1�
; : : : ;

∂

∂x�d�

)T
g;

∇2g =
(

∂2

∂x�i� ∂x�j�

)
g for i; j = 1; : : : ; d:

(2.1)
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We say ∇2T is bounded if supy∈Jd sup�x�≤1 ��x;∇2T�y�x�� < ∞. Using this
notation, we now require T to satisfy the following assumption.

A1. The true image T: Jd → R possesses a bounded second derivative
∇2T.

Although images satisfying A1 do not include those with abrupt changes or
discontinuities, a wide range of imaging applications is covered by A1.

The random noise ε. Let ε denote a random function defined on Jd and
assume that for x ∈ Jd, εx = ε�x� is a random variable with probability
density function fx = f�·yx�. Let ∇f denote differentiation of f by x ∈ Jd in
analogy with the notation of (2.1). (We shall not assume that f is differentiable
with respect to its first argument.) Assume that ε and f satisfy the following
assumptions.

A2. The εx are independent with mean zero.

A3. The density f is twice continuously differentiable and the derivatives
∇f and ∇2f are absolutely integrable.

A4. The family �f�·yx�: x ∈ Jd� is symmetric about 0, satisfies a Lipschitz
condition at 0 and is strictly positive at 0.

The observed data Y. For x in Jd put

Y�x� = T�x� + εx:(2.2)

Equation (2.2) defines a random variable Y�x� with probability density func-
tion fY�·yx� given by

fY�yyx� = f�y−T�x�yx�:(2.3)

FormallyY exists for each x ∈ Jd; in practice, however, it can only be observed
at discrete points in Jd. As in Härdle and Gasser (1984), our method can be
extended to irregularly spaced data, but for mathematical simplicity, we limit
ourselves here to data on a regular d-dimensional grid. For n > 0, define
Gn ⊆ Zd by

Gn = �j = �j�i�� ∈ Zd: �j�i�� ≤ n; i = 1; : : : ; d�:
The grid Gn is regular, square-based and consists of �2n+ 1�d equally spaced
points. With each j ∈ Gn we associate a sampling point xj ∈ Jd, given by

xj = n−1j:(2.4)

So xj depends on n, but for notational convenience we do not explicitly state
this dependence. Write εj instead of εxj and put

Yj ≡ Y�xj� = T�xj� + εj for j ∈ Gn:
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The median smoother T̂: To estimate T from the data Yj, we use the
median smoother or running median, denoted by T̂ and defined, for x ∈ Jd,
by

T̂�x� = arg min U�x; ·�;(2.5)

where

U�x; ·� =
∑
j∈Gn

αj�x��Yj − ·�

and 0 ≤ αj�x� ≤ 1 such that
∑
j∈Gn

αj�x� ≤ 1. Sometimes T̂�x� is called
the LAD estimator (least absolute deviation estimator) as in Bloomfield and
Steiger (1983) and Pollard (1990).

To allow for edge effects, we require
∑
j∈Gn

αj�x� ≤ 1 and not
∑
j∈Gn

αj�x� =
1. Since we are concerned with asymptotic behavior, the choice of method
for dealing with edge effects is not addressed in this paper. Furthermore, we
restrict attention to weights which correspond to the uniform kernel. Since we
are interested in asymptotic properties of the median smoother, this choice has
the advantage of simplifying notation, in particular in the proofs. The method
could be used with other kernel functions; however, the salient points and the
comparison with the mean smoother are not affected by our choice of weights.

We choose the weights in the following way. Fix n > 0. For x = �x�i�� ∈ Jd
define d-dimensional cubes Vx of volume n−d by

Vx =
{
z = �z�i�� ∈ �−2;2�d: x�i� − 1

2n
≤ z�i� < x�i� + 1

2n
; ∀ i = 1; : : : ; d

}
:

For 0 < k < n, put

h = 2k+ 1
2n

:(2.6)

For x ∈ Jd and j ∈ Gn, define αj�x� by

αj�x� =
{ �2k+ 1�−d; if Vxj−x ∩ �−h;h�

d ⊇ In;
0; otherwise,

(2.7)

where In denotes a open cube of volume �2n�−d. So αj�x� = �2k + 1�−d, if

−h ≤ x�i�j − x�i� ≤ h for each i = 1; : : : d; and αj�x� = 0 otherwise. It follows
that at most �2k+ 1�d weights are nonzero. In some of the proofs the weights
will be given in terms of kernel functions. The corresponding form for α then
becomes

αj�x� = h−dIχj

∫
Vxj

K

(
u− x
h

)
du;(2.8)

where Iχj denotes the indicator function of the set χj = �x: �x�i�j −x�i�� ≤ h; i =
1; : : : ; d� and K �u� = 2−d on �−2;2�d. Putting

Lk�x� = �j ∈ Gn: αj�x� 6= 0�(2.9)



1652 I. KOCH

and writing Uk instead of U to indicate the dependence of U on k therefore
leads to

Uk�x; ·� =
∑

j∈Lk�x�
αj�x��Yj − ·� = �2k+ 1�−d

∑

j∈Lk�x�
�Yj − ·�:(2.10)

The bandwidth or smoothing parameter h [see (2.6)] is the parameter of
interest in nonparametric regression. In image analysis, however, one is in-
terested in the parameter k, which is directly related to the size of the moving
window L [see (2.9)] in the smoothing process and which may be interpreted
as the window size. The aim is to select k and h asymptotically optimally as
n → ∞. To evaluate the performance of the median smoother T̂k ≡ T̂, we
consider the (pointwise) mean square error (MSE) of T̂k. For x ∈ Jd, put

MSE�T̂k�x�� = E�T̂k�x� −T�x��2(2.11)

and then find the optimal k and h with respect to (2.11).

Approximations to the median smoother. To calculate the mean square er-
ror of T̂k, we employ methods used in the development of the theory of M-
estimation. These methods require differentiability properties which the me-
dian does not possess and we therefore cannot adopt this approach directly.

We call τ̂ a (weighted) M-estimator for the observations Yj if

τ̂ = arg min
∑
ajρ�Yj − ·�

for weights aj and some “distance” function ρ. Using this definition, it follows

that the median smoother T̂ of (2.5) is a weighted M-estimator with ρ0�z� =
�z�.

The approach adopted here is to construct families of convex C2-functions
ρν and Uν

k with

Uν
k�x; ·� =

∑

j∈Lk�x�
αj�x�ρν�Yj − ·�(2.12)

in such a way that the sequence of minimizers of Uν
k converges to that of Uk.

To obtain the convergence of T̂νk to T̂k, it suffices that ρν → ρ0 as ν → 0.
The C2 property of ρν further allows us to calculate the MSE for each T̂νk in
terms of expected value and variance of Hν [see (1.2)]. Combining these two
results and letting ν decrease at a suitable rate enables us to estimate the
MSE of T̂k from the corresponding estimate for T̂νk.

We use the family of functions ρν: R→ R defined by

ρν�z� = �z2 + ν2�1/2; ν > 0; z ∈ R:(2.13)

From (2.13) it follows that limν→0 ρν�z� = ρ0�z�: The convexity of Uν
k implies

that for x ∈ Jd, �τ̂νk�x� ∈ R: τ̂νk�x� = arg min Uν
k�x; ·�� is nonempty, convex
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and compact. This result follows as in Lemma 1 of Huber (1964) and shows
that a minimum of Uν

k exists and is unique. For x ∈ Jd put

T̂νk�x� = arg minUν
k�x; ·�:(2.14)

Clearly T̂νk is a smooth M-estimator corresponding to the convex C2-function
ρν. In the next section we consider some of the properties of T̂νk, which will
then be used in the MSE calculations for T̂k.

3. Results. Our approach to calculating the MSE of T̂k is described in
this section. Proofs of the propositions and the theorem given here can be
found in Section 5. We regard the parameters k, h and ν as functions of n and
let L1–L4 denote the following statements about the asymptotic behavior of
k, h and ν as n→∞:

L1. k�n� → ∞.
L1a. nh�n� → ∞.
L2. k�n�/n→ 0.
L2a. h�n� → 0.
L3. ν�n� → 0.
L4. ν�n� ≤ κ0k

−3d/2; κ0 > 0:

For nonparametric regression L1a and L2a, which are equivalent to L1 and
L2, respectively, are often used. This reflects the emphasis on the bandwidth
rather than the size of the window.

We begin by proving the convergence of the estimators T̂νk to the median
T̂k. As can easily be seen from the definition of Uk and Uν

k [see (2.10) and
(2.12)],

Uν
k�x;ω� → Uk�x;ω� a:s: as ν→ 0 for x ∈ Jd; ω ∈ R;

but it remains to be shown that the sequence of minimizers of theUν
k converges

to the minimizer of Uk as ν → 0. (The latter is unique, since Uk is defined
on an odd number of points.) We obtain the following relationship between T̂νk
and T̂k.

Proposition 1. Assume that T and ε satisfy A1–A4 and that k and ν sat-
isfy L1–L4. If x ∈ Jd, then for κ0 as in L4,

�T̂νk�x� − T̂k�x�� ≤ 2d+1κ0k
−d/2 a:s: as n→∞:

For ρν�z� as in (2.13) put

ψν�z� =
d

dz
ρν�z�; ψ′ν�z� =

d2

dz2
ρν�z�:(3.1)

For data Yj, j ∈ Gn, and x ∈ Jd, put

Hν
k�x; z� =

∑

j∈Lk�x�
αj�x�ψν�Yj − z�:
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For x ∈ Jd, Hν
k�x; T̂νk�x�� = 0. The function Hν

k is differentiable with re-
spect to the second variable and we may thus use a Taylor expansion of each
summand of Hν

k about T�x�, the true image at x, to obtain

Hν
k�x; T̂νk�x�� =Hν

k�x;T�x�� + D̃ν
k�x;T�x���T�x� − T̂νk�x��;

where

D̃ν
k�x;T�x�� =

∑
αj�x�ψ′ν�Yj −T�x� + ηj�(3.2)

denotes the remainder with ηj = θj�T�x� − T̂νk�x�� and 0 < θj < 1. Since

T̂νk�x� is a root of Hν
k�x; ·�, we obtain the expression

T̂νk�x� −T�x� =Hν
k�x;T�x���D̃ν

k�x;T�x���−1:(3.3)

If D̃ν
k�x;T�x�� converges to some nonrandom L�x�, say, then

E�T̂νk�x� −T�x��2 → EHν
k�x;T�x��2L�x�−2y(3.4)

hence, the mean square error of T̂νk can be expressed in terms of
EHν

k�x;T�x��2.
This is the approach we adopt in order to calculate the mean square error of

T̂νk�x�. The idea goes back at least as far as Cramér’s proof of the asymptotic
normality of the maximum likelihood estimator [see Section 33.3 of Cramér
(1946)].

We begin with a calculation for EHν
k�x;T�x��2. The following notation will

be used in the propositions and the theorem below:

C0 = sup
x∈Jd
�∇T�x��;

C1 = sup
�θ3�≤1

∫
Jd
��u;∇2T�x+ θ3hu�u��du;

C2 = f�0yx�−1 sup
�θ2�≤1

∫
Jd

2��u;∇T�x� ⊗ ∇f�0yx+ θ2hu�u��du;

κ1 = 1
4 max�4C2

0;2
−2dC2

1;2
−2dC2

2;2
1−df�0yx�−2�;

(3.5)

where ⊗ denotes the tensor product of two vectors.

Proposition 2. Assume that T and ε satisfy A1–A4, and that k and ν
satisfy L1–L3. If x ∈ Jd and κ1 is as in (3.5), then, as n→∞,

EHν
k�x;T�x��2 ≤ �2f�0yx��2κ1

{(
k

n

)4

+ n−2 + k−d
}{

1+O�ν2� +O
(
k

n

)}
:

We next prove the convergence of D̃ν
k [see (3.2)] in order to make use of (3.3)

and (3.4) in the derivation of estimates of the bias and variance of T̂νk.
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Proposition 3. Assume that T and ε satisfy A1–A4 and that k and ν sat-
isfy L1–L4. If x ∈ Jd, then

D̃ν
k�x;T�x�� → 2f�0yx� a:s:

and

MSE�T̂νk�x�� ≤ κ1

{(
k

n

)4

+ n−2 + k−d
}
�1+ o�1��

as n→∞, with κ1 as in (3.5).

The terms �k/n�4 and n−2 are due to squared bias and have constants C1
corresponding to n−2 and 2−2d−2 max�C2

1;C
2
2� corresponding to �k/n�4. The

constant C1 is a measure of curvature of T and C2 = 0 if f is independent of
x. The variance part of MSE is bounded by 21−d�2f�0yx��−2k−d.

Our main result gives a general bound for MSE�T̂k�x�� as well as estab-
lishing optimal choices for the parameters k and h. To derive the mean square
error of the median smoother T̂k�x� from the preceding results, we make use
of the decomposition

T̂k −T = �T̂k − T̂νk� + �T̂νk −T�(3.6)

and the inequality for the mean square error calculations:

E�T̂k�x� −T�x��2 ≤ 2�E�T̂k�x� − T̂νk�x��2 + E�T̂νk�x� −T�x��2�:(3.7)

In Proposition 1, the rate of convergence of the estimators T̂νk to T̂k was given.
This result together with the estimate of the mean square error of T̂νk as given
in Proposition 3 leads to

Theorem 4. Assume that T and ε satisfy A1–A4 and that k and ν satisfy
L1–L4. If x ∈ Jd, then as n→∞,

MSE�T̂k�x�� ≤ κ2

{(
k

n

)4

+ n−2 + k−d
}
�1+ o�1��;(3.8)

where

κ2 = 2 max�κ1; �2d+1κ0�2�;

κ1 is as in (3.5) and κ0 is as in L4. Furthermore, optimal choices of k, h and
the associated MSE are as follows:

(i) If 1 ≤ d ≤ 4, then k?�n� = n4/�4+d� [respectively h?�n� = n−d/�4+d�]
minimizes the order of MSE and

MSE�T̂k?�x�� = O�n−4d/�4+d��:(3.9)
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(ii) If d ≥ 4, then k?�n� = n2/d [respectively h?�n� = n�2−d�/d] minimizes the
order of MSE and

MSE�T̂k?�x�� = O�n−2�:(3.10)

The first two terms in (3.8) are due to squared bias and the term k−d is
due to the variance of T̂k�x�. The factor 2 in the constant κ2 is due to the fact
that (3.7) was used. The optimal rates of convergence of MSE (3.9)–(3.10) may
be rather surprising in the sense that they seem to indicate that the rates of
convergence of MSE do not decrease as the dimension increases. This is in
fact not the case as the next corollary shows. Put

K = �2k+ 1�d; N = �2n+ 1�d:(3.11)

The quantity K denotes the effective sample size and N denotes the actual
sample size. Regarding K as a function of N, we may now restate the results
of Theorem 4 in terms of K and N.

Corollary 5. Under the assumptions of Theorem 4,

MSE�T̂k�x�� = O��K/N�4/d +N−2/d +K−1�:

Furthermore, the optimal rates of convergence of MSE are as follows:

(i) If 1 ≤ d ≤ 4, then MSE�T̂k?�x�� = O�N−4/�4+d��.
(ii) If d ≥ 4, then MSE�T̂k?�x�� = O�N−2/d�.

To conclude this section, we compare the rates of convergence of the median
smoother with those of the mean smoother. For this, we assume A1–A4 on the
true image T and the error ε and let σ2 denote the variance of ε. We take the
weights αj�x� as defined in (2.7).

Let U�2�k and H�2�k denote the analogues for the mean of Uk and Hk. Then
for x ∈ Jd, z ∈ R,

U
�2�
k �x; z� =

∑

j∈Lk�x�
αj�x��Yj − z�2

H
�2�
k �x; z� = −2

∑

j∈Lk�x�
αj�x��Yj − z�:

If T̂�2�k �x� denotes the minimizer of U�2�k �x; ·�, then the ψ function and its
derivative are given as twice the identity function and the constant 2, respec-
tively. So by the choice of our weights αj we observe that, as n→∞,

MSE�T̂�2�k �x�� → 1
4EH

�2�
k �x;T�x��2;

and the rates of MSE are now given by the following corollary.
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Corollary 6. Under the assumptions of Theorem 4,

MSE�T̂�2�k �x�� ≤ κ4

{(
k

n

)4

+ n−2 + k−d
}
�1+ o�1��(3.12)

as n→∞, where

κ4 = max�C2
0;2
−2d−2C2

1;2
1−dσ2�:(3.13)

As in the case of MSE�T̂k�x��, the first two terms are due to squared bias
and have constants 2−2d−2C2

1 and C2
0, respectively, and variance is estimated

by 21−dσ2k−d here.
A comparison of (3.12) with Theorem 4 shows that, asymptotically, the me-

dian smoother performs as well as the mean smoother, since they have the
same rate of convergence. In the case where f�0yx� = σ = 1, one observes
that the constants κ2 used in Theorem 4 and κ4 used in Corollary 6 differ es-
sentially by the multiplicative factor 2 in κ2, which can be traced back to (3.6)
and (3.7). These constants indicate that the median smoother may possibly
be worse than the mean smoother. Examples 1 and 2 in the next section will
illustrate this point further. Note that we may ignore the term 22d+2κ2

0, since
κ0 can be chosen as small as required.

4. Discussion and illustration of results.

Example 1 (The normal pdf ). Assume that T�x� = x, x ∈ �−1;1� and
that εx are normal with variance σ2 and independent of x. Then C0 = 1,
C1 = C2 = 0. Under the normal model, f�0�−2 = 2πσ2 and we therefore get
the following constants: for the median, κ2 = max�2; πσ2� and for the mean,
κ4 = max�1; σ2�. So the mean smoother performs better, as expected.

Example 2 (An outlier contamination model). Let T; C0; C1 and C2 be
as above and assume that f has the form

f�x� = 1− p√
2π

exp

(
− x

2

2

)
+ p

σ1

√
2π

exp

(
− x2

2σ2
1

)

for p � 1 < σ1. It follows that f�0� ≈ �1 − p�/
√

2π and, therefore, κ2 ≈
π/�1 − p� for the median. In contrast to this, the constant for the mean is
κ4 = �1− p� + pσ2 > κ2. Since the asymptotic rate is the same for mean and
median smoother, the median performs better than the mean. This again is
expected.

Dependence of bias and variance on dimension. Proposition 3, Theorem 4
and (3.12) show that, asymptotically, the M-estimators T̂ν, the median T̂ and
the mean T̂�2� converge to the true image at the same rate. The term k−d is
due to variance of the estimators and reflects the fact that variance decreases
as the effective sample size increases, since K = �2k+1�d. In contrast to this,
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bias, which is O��k/n�2 + n−1�, does not seem to depend on the dimension of
the problem.

Dependence of optimal rate on dimension. It is interesting to observe the
effect of the dimension on the optimal rate of convergence, as given in Theo-
rem 4 and Corollary 5. One first observes that the optimal rate of convergence
decreases as the dimension d increases. More important, however, is that one
has to distinguish two cases, 1 ≤ d ≤ 4 and d ≥ 4, and that the optimal k
and the corresponding rate of MSE are given by different functions in each
case. The split into two cases is due to the order of bias: if 1 ≤ d ≤ 3, the
term in n−1 is negligible compared with that in �k/n�2. For d = 4, and for
the optimal window size parameter k, the terms in �k/n�2 and n−1 are of the
same order. When d > 4, the term in n−1 becomes the dominant term and the
term in �k/n�2 becomes negligible. The importance and dominance of the grid
spacing n−1 for higher-dimensional observations is rather surprising in view
of existing one-dimensional results in nonparametric regression, where this
term is usually negligible [see pages 127–131 of Eubank (1988)].

Dependence of chosen ν on dimension. For the optimally chosen k, ν de-
creases more rapidly as d increases. However, for d ≥ 4, L4 could be replaced
with the asymptotic behaviour of ν described by ν�n� = O�k−dn−1�, since it is
no longer necessary that the rate of convergence of T̂νk to T̂k be smaller than
�k/n�2. [As we have seen in the previous paragraph, for d ≥ 4, the bias of T̂k
is O�n−1�.]

5. Proofs. In this section we give the proofs of Propositions 1–3 and of
Theorem 4. We let κi denote the constants as defined in the results in Section
3 and we let ci denote generic constants in the proofs.

Proof of Proposition 1. For x ∈ Jd, ω ∈ R, k and ν such that L1–L4
hold,

sup
k

�Uν
k�x;ω�−Uk�x;ω�� ≤ sup

k

∑

j∈Lk�x�
αj�x���Yj−ω�+ν−�Yj−ω�� ≤ ν:(5.1)

From the definitions of Uν
k and Uk, Uν

k�x;ω� ≥ Uk�x;ω� and, therefore,

Uk�x;ω� ≤ Uν
k�x;ω� ≤ Uk�x;ω� + ν:(5.2)

Now for T̂νk�x� = arg min Uν
k�x; ·� and T̂k�x� = arg min Uk�x; ·�,

Uν
k�x; T̂νk�x�� ≤ Uν

k�x; T̂k�x�� ≤ Uk�x; T̂k�x�� + ν
follows immediately from (5.2) and, therefore,

�T̂νk�x� − T̂k�x�� ≤ ν�2k+ 1�d;(5.3)

since Uν
k�x; T̂νk�x�� belongs to the epigraph of Uk, Uν

k�x; T̂νk�x�� is bounded
above by Uk�x; T̂νk�x�� + ν and �2k + 1�−d is a lower bound for the absolute
value of the slope of the curve Uk. For ν as in L4, the result follows. 2
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We now turn to Lemmas 7 and 8, which are primarily used in the proof of
Proposition 2. These lemmas as well as the proofs of subsequent propositions
use the notation

γν�x� = Eψ′ν�εx�:(5.4)

Lemma 7. Assume that k satisfies L1 and L2 and T and ε satisfy A1–A4.
For x ∈ Jd, take xj ∈ Jd such that j ∈ Lk�x�. Put C0 = supx �∇T�x��. If
u ∈ Vxj

; ν > 0, then

�Eψν�Yj −T�x�� − Eψν�Y�u� −T�x��� ≤ C0
γν�x�
n

{
1+O

(
k

n

)}
:

Proof. Fix x, xj ∈ Jd. For u ∈ Vxj
, consider

E ≡ Eψν�Yj −T�x�� − Eψν�Y�u� −T�x��
=
∫
ψν�y−T�x���fY�yyxj� − fY�yyu��dy

= −
∫
ψν�y−T�x���u− xj;∇fY�yyxj + ξj��dy:

(5.5)

Here we have used the Taylor expansion of fY about xj and ξj = �ξ
�i�
j � =

�θ�i�1 �u�i� − x
�i�
j �� for θ�i�1 with 0 < θ�i�1 < 1; i = 1; : : : ; d. Another Taylor expan-

sion of ∇fY about x gives, for some ζj = �ζ
�i�
j � = �θ

�i�
2 �x

�i�
j − ξ

�i�
j − x�i��� and

0 < θ�i�2 < 1; i = 1; : : : ; d,

E = −
∫
ψν�y−T�x����u− xj;∇fY�yyx��

+ �u− xj;∇2fY�yyx+ ζj��xj + ξj − x���dy:
(5.6)

Since Eψν�Y�x� −T�x�� = 0, the first term in (5.6) becomes
〈
xj − u;

∫
ψν�y−T�x��∇fY�yyx�dy

〉
= �xj − u;∇T�x��γν�x�:(5.7)

To estimate the second term in (5.6), note that ψν is bounded and that
by A3,

∫
∇2fY = O�1�. Furthermore, u − xj = O�n−1�, since u ∈ Vxj

, and
xj − x+ ξj = O�k/n�, since n−1 = o�k/n�, by L1 and L2. Combining these
facts, one obtains

∣∣∣
〈
u− xj;

∫
ψν�y−T�x��∇2fY�yyx+ ζj��xj + ξj − x�dy

〉∣∣∣ ≤ c2
k

n2
(5.8)

with c2 = supy �∇2fY�yyx�� <∞ by A3. Substituting (5.7) and (5.8) into (5.6)
now yields the following estimate for E:

�E� ≤ ��xj − u;∇T�x���γν�x� + c2
k

n2

≤ c3n
−1γν�x�

{
1+O

(
k

n

)}
;

with c3 = supx��∇T�x���, as required. 2



1660 I. KOCH

Lemma 8. Assume that T and ε satisfy A1–A4 and that k and ν satisfy
L1–L3.

(i) If x, s ∈ Jd, then there exist δ0 > 0 and c0 > 0 such that for 0 < δ ≤ δ0,

Eψ′ν�Y�s� −T�x�� ≤ f�0y s�g�T�s� −T�x�; ν��1+ c0δ+O�ν2��;

where

g�a; b� = δ+ a
��δ+ a�2 + b2�1/2 +

δ− a
��δ− a�2 + b2�1/2 :

(ii) If x ∈ Jd and s is chosen such that s = xj for some j ∈ Lk�x� or

s = x+ hu for u ∈ Jd and h = �2k+ 1�/�2n�, then

Eψ′ν�Y�s� −T�x�� ≤ 2f�0yx�
{

1+O
(
k

n

)
+O�ν2�

}
:

(iii) For x = s ∈ Jd and ν < δ,

2f�0yx�
{

1− ν2

2δ2

}
≤ γν�x� ≤ 2f�0yx��1+O�ν2��:

Proof. For x, s ∈ Jd, put

Y�s� −T�x� = T�s� −T�x� + εs = a+ εs;

where a = T�s� −T�x�. Then

A ≡ Eψ′ν�Y�s� −T�x�� =
∫
ψ′ν�a+ ε�f�εy s�dε:(5.9)

The density f satisfies a Lipschitz condition at 0. It follows that there exists
δ0 > 0 such that for δ ≤ δ0 and δ = O�k/n�,

f�εy s� ≤ f�0y s��1+ c1δ� for ε ∈ �−δ; δ�; c1 > 0:

For δ as above, A becomes

A =
∫ δ
−δ
ψ′ν�a+ ε�f�εy s�dε+

(∫ −δ
−∞
+
∫ ∞
δ

)
ψ′ν�a+ ε�f�εy s�dε

≤ f�0y s��1+ c1δ�
∫ δ
−δ
ψ′ν�a+ ε�dε

+
(∫ −δ
−∞
+
∫ ∞
δ

)
ψ′ν�a+ ε�f�εy s�dε:

(5.10)

Note that
∫ δ
−δ
ψ′ν�a+ ε�dε =

δ+ a
��δ+ a�2 + ν2�1/2 +

δ− a
��δ− a�2 + ν2�1/2(5.11)
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and, as ν→ 0,
(∫ −δ
−∞
+
∫ ∞
δ

)
ψ′ν�a+ ε�f�εy s�dε ≤ c2

ν2

�a+ δ�3 = O�ν
2�(5.12)

for some c2 > 0. Substitution of (5.11) and (5.12) into (5.10) now yields

A ≤ f�0y s��1+ c1δ�g�a; ν� +O�ν2�
= f�0y s�g�a; ν��1+ c1δ+O�ν2��

(5.13)

with g as in the statement of the lemma.
Inequality (5.13) gives a bound for A for general x, s ∈ Jd. For specific

choices of s and x, the upper and lower bounds of parts (ii) and (iii) follow by
similar arguments. 2

Proof of Proposition 2. Fix x ∈ Jd and consider for k ∈ N, ν > 0,

βνk ≡ EHν
k�x;T�x��

= h−d
∑

j∈Lk�x�

∫
Vxj

K
(u− x

h

)
Eψν�Yj −T�x��du

= h−d
∑
j∈L

∫
Vxj

K
(u− x

h

)
Eψν�Y�u� −T�x��du+ γν�x�O�n−1�;

(5.14)

by Lemma 7. Next fix j ∈ L. Write Vj for Vxj
and consider

Wj ≡
∫
Vj

K
(u− x

h

)
Eψν�Y�u� −T�x��du

= hd
∫
Vj

K �u�Eψν�Y�hu+ x� −T�x��du:
(5.15)

Here we have used the change of variable z = �u − x�/h, and Vj denotes
the cube of volume O�k−d� which is obtained from Vj by the above change of
variable. We now consider Eψν�Y�hu + x� − T�x��. For u ∈ Vj, put ξ = hu.
Observe that Eψν�Y�s� −T�s�� = 0 for s ∈ Jd and, therefore,

Eψν�Y�ξ + x� −T�x�� = τ
∫
ψ′ν�y−T�ξ + x� + θ�fY�yy ξ + x�dy;

where τ = �T�ξ + x� − T�x�� and we have used the Taylor expansion of ψν
about ξ+ x with θ = θ0�T�ξ+ x� −T�x�� for some 0 < θ0 < 1. A change from
fY to f and a Taylor expansion of f about x leads to

Eψν�Y�ξ + x� −T�x�� = τ
∫
ψ′ν�ε+ θ�f�εy ξ + x�dε

= τ
∫
ψ′ν�ε+ θ��f�εyx� + �ξ;∇f�εy ξ2 + x���dε
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for some ξ2 = θ2ξ, θ2 positive and �θ2� < 1. The estimates of Lemma 8(ii) lead
to

�Eψν�Y�ξ + x� −T�x���

≤ 2
∣∣∣∣τ�f�0yx� + h�u;∇f�0y ξ2 + x����1+O

(
k

n

)
+O�ν2��

∣∣∣∣ :
(5.16)

Substitution of (5.15) and (5.16) into (5.14) yields
∣∣∣∣∣h
−d ∑

j∈L
Wj

∣∣∣∣∣ =
∣∣∣
∫
Jd

K �u�Eψν�Y�hu+ x� −T�x��du
∣∣∣

≤ 2
∫
Jd
�K �u�τ�f�0yx� + h�u;∇f�0y ξ2 + x����

×
{

1+O
(
k

n

)
+O�ν2�

}
du:

(5.17)

Next observe that T has two bounded derivatives (by A1) and hence

τ = h�u;∇T�x�� + 1
2h

2�u;∇2T�x+ θ3hu�u�(5.18)

for some positive θ3 with �θ3� < 1 and ξ = hu.
Using the identity (5.18) and the fact that ξ2 = θ2ξ = θ2hu, (5.17) is esti-

mated by
∣∣∣∣∣h
−d ∑

j∈L
Wj

∣∣∣∣∣

≤ h2
(
�f�0yx��1+O�h� +O�ν2���

∫
Jd
�K �u��u;∇2T�x+ θ3hu�u��du

+�1+O�ν2��
∫
Jd �2K �u��u;∇T�x� ⊗ ∇f�0yx+ θ2hu�u��du

)
;

since K is symmetric. Here ∇T�x�⊗∇f�0yx+θ2hu� denotes the tensor product
of the vectors ∇T�x� and ∇f�0yx+ θ2hu�.

Since Lemma 8(iii) gives an upper and lower bound for γν�x�,

�βνk� =
∣∣∣∣∣h
−d ∑

j∈L
Wj + γν�x�O�n−1�

∣∣∣∣∣

≤ c1

{(
k

n

)2

+ n−1

}{
1+O�ν2� +O

(
k

n

)}
:

(5.19)

Here

c1 = f�0yx�κ3; κ3 = max�2C0;2
−dC1;2

−dC2�;(5.20)

where C0; C1 and C2 are given before the statement of Proposition 2. This
completes the “bias” part of the proof.



MEDIAN SMOOTHERS 1663

For x ∈ Jd, k ∈ N, ν > 0, j ∈ Lk�x�, put

Zj = ψν�Yj −T�x��:

Consider

υνk ≡ var Hν
k�x;T�x�� =

∑

j∈Lk�x�
αj�x�2�EZ2

j − �EZj�2�:(5.21)

Let j ∈ Lk�x�. Since fY is twice differentiable, we have

EZj =
∫
ψν�y−T�x��fY�yyxj�dy

=
∫
ψν�y−T�x���fY�yyx� + �xj − x;∇fY�yyx��

+ 1
2�xj − x;∇2fY�yyx+ θ4�xj − x���xj − x���dy

= γν�x��a;∇T�x���1+O�a��

(5.22)

for some 0 < θ4 < 1 and a = xj − x, since Eψν�εx� = 0. For the last term we
have used the facts that ψν�z� ≤ 1 for any z ∈ R and that

∫
∇2fY dy = O�1�.

The term EZ2
j is bounded by 1. This fact and substitution of (5.22) into

(5.21) lead to

υνk ≤
∑

j∈Lk�x�
αj�x�2�1+ γν�x�2�xj − x;∇T�x��2�1+O�xj − x���

≤ 21−dk−d
[

1+O
{(

k

n

)2}]
;

(5.23)

since xj − x = O�k/n� and ∇T is bounded by A1. From this and (5.19) the
result now follows. 2

The proof of Proposition 3 requires Lemmas 9 and 10, which we state and
prove now.

Lemma 9. Assume that T and ε satisfy A1–A3 and that k satisfies L1–L2.
If x ∈ Jd, then, as k→∞,

�T̂k�x� −T�x�� ≤ sup
x
�∇T�x��

(
k

n

)
a:s:

Proof. Fix x ∈ Jd. For n, k > 0 there exists j ∈ Gn such that x ∈ Vxj
.

Since T̂k�x� = T̂k�xj�, we put

T̂k�x� = med
`
�Yj+`�;
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where med` denotes the median over the set �` ∈ Gn: �`�i�� ≤ k ∀ i = 1; : : : ; d�.
Consider

�T̂k�x� −T�x�� =
∣∣∣med

`
�T�xj+`� −T�x� + εj+`�

∣∣∣

=
∣∣∣∣med

`

{
εj+` + �ξ`;∇T�x�� +

1
2
�ξ`;∇2T�x+ θξ`�ξ`�

}∣∣∣∣

≤
∣∣∣med

`
�εj+`�

∣∣∣+max
`

∣∣∣∣�ξ`;∇T�x�� +
1
2
�ξ`;∇2T�x+ θξ`�ξ`�

∣∣∣∣

≤ c2
k

n
+ c3

(
k

n

)2

≤ sup
x
�∇T�x��

(
k

n

)

(5.24)

for c2, c3 > 0, for positive θ with �θ� < 1, and ξ` = xj+` − x in the Taylor
expansion of T about x.

To see why this last inequality holds, it suffices to show that

med
`
�εj+`� → med εj a.s., as k→∞:

However, this follows from an application of the extended Borel–Cantelli the-
orem [see page 105ff of Shorack and Wellner (1986)] together with the proof
given on page 7 of Pollard (1984). 2

Lemma 10. Assume that T and ε satisfy A1–A4. Let x ∈ Jd, k ∈ N, ν > 0.
If k and ν satisfy L1–L4, then

D̃ν
k�x;T�x�� = 2f�0yx��1+ o�1�� a.s. as n→∞:

Proof. Fix x ∈ Jd. For k ∈ N, ν > 0, put L = Lk�x� and

D̃ν
k ≡

∑
j∈L

αj�x�ψ′ν�Yj −T�x� − ηj�;

where ηj = θj�T�x� − T̂νk�x��, 0 < θj < 1.
We begin with an estimate for ED̃ν

k. We then show that lim ED̃ν
k exists and

that for ν and k/n sufficiently small, D̃ν
k = ED̃ν

k�1+ o�1�� a.s.
Fix j ∈ L, put Zj = ψ′ν�Yj −T�x� − ηj� and consider

EZj = Eψ′ν�Yj −T�x� − ηj� = Eψ′ν�T�xj� −T�x� − ηj + εj�:
Observe that T�xj� − T�x� = O�k/n� and �ηj� = O�k/n� a.s. This last state-
ment follows from Lemma 9 together with Proposition 1 as ν→ 0, k→∞. To
obtain an estimate for EZj, we use arguments similar to those given in the
proof of Lemma 8. However, instead of using 0 < δ < δ0, here we regard δ as
a function of n. Specifically, put δ�n� = k1+ζ/n, where ζ > 0 is chosen small
enough that δ�n� → 0 as n→∞. Putting χ = 2f�0yx��1+ o�1��, one obtains,
as in Lemma 8,

χ

{
1− c2

k1+ζ

n

}
≤ EZj ≤ χ

{
1+ c1

k1+ζ

n

}
(5.25)



MEDIAN SMOOTHERS 1665

for c1; c2 > 0. It follows that

ED̃ν
k =

∑
j∈L

αj�x�EZj→ 2f�0yx� as n→∞(5.26)

and, therefore, it remains to show that

D̃ν
k = 2f�0yx��1+ o�1�� a.s.(5.27)

as k→∞, ν→ 0. To do this, put

Z?
j = Zj − EZj; Dν?

k =
∑
j∈L

αj�x�Z?
j:

The proof of (5.27) proceeds along the following lines. One first shows that
var Dν?

k → 0 as k→∞, ν→ 0, and so Dν?
k → 0 a.s.

From this last result and the definition of Dν?
k , it follows that

lim
k→∞
ν→0

D̃ν
k = 2f�0yx� a.s. 2

Proof of Proposition 3. Fix x ∈ Jd. For k ∈ N, ν > 0, put

rνk = T̂νk�x� −T�x�:
By (3.3) and Lemma 10,

rνk =Hν
k�x;T�x���2f�0yx��−1�1+ o�1�� (a.s.)

= �EHν
k�x;T�x�� + �Hν

k�x;T�x�� − EHν
k�x;T�x����

×�2f�0yx��−1�1+ o�1�� (a.s.):

Putting Zj = ψν�Yj − T�x�� for j ∈ Lk�x�, one observes that the random
variables Zj are uncorrelated and therefore the strong law of large numbers
yields

Hν
k�x;T�x�� − EHν

k�x;T�x�� → 0 a.s.(5.28)

From Theorem 1.4 of Chung (1974) we may deduce that

E�Hν
k�x;T�x�� − EHν

k�x;T�x���p→ 0 for p = 1;2:(5.29)

From (5.28)–(5.29) it follows that bias B and variance V of T̂νk are given by

B�rνk� = EHν
k�x;T�x���2f�0yx��−1�1+ o�1��

V�rνk� = var Hν
k�x;T�x���2f�0yx��−2�1+ o�1��:

The results of Proposition 2 for expected value and variance of Hν
k�x;T�x��

lead to the following mean square error estimate of T̂νk�x�:

MSE�T̂νk�x�� ≤ κ1

{(
k

n

)4

+ n−2 + k−d
}
�1+ o�1��

as k → ∞, ν → 0, since k, ν satisfy L1–L4. This completes the proof of
Proposition 3. 2
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Proof of Theorem 4. For x ∈ Jd, k ∈ N, ν > 0, write

T̂k�x� −T�x� = �T̂k�x� − T̂νk�x�� + �T̂νk�x� −T�x��
and observe that

E�T̂k�x� −T�x��2 ≤ 2�E�T̂k�x� − T̂νk�x��2 + E�T̂νk�x� −T�x��2�:(5.30)

Combining the results of Propositions 1 and 3, a bound for the mean square
error of T̂k�x� is given by

MSE�T̂k�x��

≤ κ2

{(
k

n

)4

+ n−2 + k−d
}
�1+ o�1�� as k→∞; ν→ 0: 2

(5.31)
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