Algebra & Number Theory

On Oliver's $p$-group conjecture

David Green, László Héthelyi, and Markus Lilienthal

Full-text: Open access

Abstract

Let S be a p-group for an odd prime p. B. Oliver conjectures that a certain characteristic subgroup X(S) always contains the Thompson subgroup J(S). We obtain a reformulation of the conjecture as a statement about modular representations of p-groups. Using this we verify Oliver’s conjecture for groups where SX(S) has nilpotence class at most two.

Article information

Source
Algebra Number Theory, Volume 2, Number 8 (2008), 969-977.

Dates
Received: 17 April 2008
Revised: 14 August 2008
Accepted: 19 September 2008
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.ant/1513805231

Digital Object Identifier
doi:10.2140/ant.2008.2.969

Mathematical Reviews number (MathSciNet)
MR2457358

Zentralblatt MATH identifier
1173.20015

Subjects
Primary: 20D15: Nilpotent groups, $p$-groups

Keywords
$p$-group characteristic subgroup Thompson subgroup $p$-local finite group Replacement Theorem

Citation

Green, David; Héthelyi, László; Lilienthal, Markus. On Oliver's $p$-group conjecture. Algebra Number Theory 2 (2008), no. 8, 969--977. doi:10.2140/ant.2008.2.969. https://projecteuclid.org/euclid.ant/1513805231


Export citation

References

  • C. Broto, R. Levi, and B. Oliver, “The theory of $p$-local groups: a survey”, pp. 51–84 in Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic $K$-theory (Evanston, IL, 2002), edited by P. Goerss and S. Priddy, Contemp. Math. 346, Amer. Math. Soc., Providence, RI, 2004.
  • A. Chermak, “Quadratic action and the $P(G,V)$-theorem in arbitrary characteristic”, J. Group Theory 2:1 (1999), 1–13.
  • GAP – Groups, Algorithms, and Programming, Version 4.4.10, The GAP Group, 2007, http://www.gap-system.org.
  • G. Glauberman, “Quadratic elements in unipotent linear groups”, J. Algebra 20 (1972), 637–654.
  • D. Gorenstein, R. Lyons, and R. Solomon, The classification of the finite simple groups, Mathematical Surveys and Monographs 40, American Mathematical Society, Providence, RI, 1994.
  • B. Huppert and N. Blackburn, Finite groups, III, Grundlehren der Mathematischen Wissenschaften 243, Springer, Berlin, 1982.
  • U. Meierfrankenfeld and B. Stellmacher, “The other $P(G,\allowbreak V)$-theorem”, Rend. Sem. Mat. Univ. Padova 115 (2006), 41–50.
  • B. Oliver, “Equivalences of classifying spaces completed at odd primes”, Math. Proc. Cambridge Philos. Soc. 137:2 (2004), 321–347.