Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Estimating functions for SDE driven by stable Lévy processes

Emmanuelle Clément and Arnaud Gloter

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


This paper is concerned with parametric inference for a stochastic differential equation driven by a pure-jump Lévy process, based on high frequency observations on a fixed time period. Assuming that the Lévy measure of the driving process behaves like that of an $\alpha$-stable process around zero, we propose an estimating functions based method which leads to asymptotically efficient estimators for any value of $\alpha\in(0,2)$ and does not require any integrability assumptions on the process. The main limit theorems are derived thanks to a control in total variation distance between the law of the normalized process, in small time, and the $\alpha$-stable distribution. This method is an alternative to the non Gaussian quasi-likelihood estimation method proposed by Masuda (Stochastic Process. Appl. (2018) To appear) where the Blumenthal–Getoor index $\alpha$ is restricted to belong to the interval $[1,2)$.


Dans cet article, nous étudions l’estimation des paramètres d’une équation différentielle stochastique dirigée par un processus de saut pur, à partir d’observations hautes fréquences du processus sur un intervalle de temps fixe. En supposant que la mesure de Lévy du processus de saut qui dirige l’équation se comporte autour de zéro comme la mesure de Lévy d’un processus $\alpha$-stable, nous proposons une méthode d’estimation basée sur des fonctions estimantes qui conduit à des estimateurs asymptotiquement efficaces des paramètres de tendance et d’échelle, pour toute valeur de $\alpha\in(0,2)$, et qui ne nécessite pas de conditions d’intégrabilité du processus. Les principaux résultats asymptotiques sont obtenus grâce à un contrôle en variation totale entre la loi du processus renormalisé, en temps petit, et la loi $\alpha$-stable. Cette méthode est une alternative à la méthode de quasi-vraisemblance non gaussienne proposée par Masuda (Stochastic Process. Appl. (2018) To appear), où l’indice de Blumenthal–Getoor $\alpha$ appartient à l’interval $[1,2)$.

Article information

Ann. Inst. H. Poincaré Probab. Statist., Volume 55, Number 3 (2019), 1316-1348.

Received: 16 November 2017
Revised: 13 June 2018
Accepted: 11 July 2018
First available in Project Euclid: 25 September 2019

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60G51: Processes with independent increments; Lévy processes 60G52: Stable processes 60J75: Jump processes 62F12: Asymptotic properties of estimators
Secondary: 60H07: Stochastic calculus of variations and the Malliavin calculus 60F05: Central limit and other weak theorems

Lévy process Stable process Stochastic differential equation Parametric inference Estimating functions Malliavin calculus


Clément, Emmanuelle; Gloter, Arnaud. Estimating functions for SDE driven by stable Lévy processes. Ann. Inst. H. Poincaré Probab. Statist. 55 (2019), no. 3, 1316--1348. doi:10.1214/18-AIHP920.

Export citation


  • [1] Y. Aït-Sahalia and J. Jacod. Volatility estimators for discretely sampled Lévy processes. Ann. Statist. 35 (2007) 355–392.
  • [2] Y. Aït-Sahalia and J. Jacod. Fisher’s information for discretely sampled Lévy processes. Econometrica 76 (2008) 727–761.
  • [3] Y. Aït-Sahalia and J. Jacod. Estimating the degree of activity of jumps in high frequency data. Ann. Statist. 37 (2009) 2202–2244.
  • [4] O. Barndorff-Nielsen and M. Sørensen. A review of some aspects of asymptotic likelihood theory for stochastic processes. Int. Stat. Rev. 62 (1994) 133–165.
  • [5] B. M. Bibby and M. Sørensen. Martingale estimation functions for discretely observed diffusion processes. Bernoulli 1 (1995) 17–39.
  • [6] K. Bichteler, J.-B. Gravereaux and J. Jacod. Malliavin Calculus for Processes with Jumps. Stochastics Monographs 2. Gordon and Breach Science Publishers, New York, 1987.
  • [7] E. Clément and A. Gloter. Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes. Stochastic Process. Appl. 125 (2015) 2316–2352.
  • [8] E. Clément, A. Gloter and H. Nguyen. LAMN property for the drift and volatility parameters of a SDE driven driven by a stable Lévy process. ESAIM Probab. Stat. To appear, 2018.
  • [9] E. Clément, A. Gloter and H. Nguyen. Asymptotics in small time for the density of a stochastic differential equation driven driven by a stable Lévy process. ESAIM Probab. Stat. To appear, 2018.
  • [10] I. A. Ibragimov and R. Has’minskiĭ. Statistical Estimation: Asymptotic Theory. Applications of Mathematics 16. Springer-Verlag, New York, 1981. Translated from the Russian by Samuel Kotz.
  • [11] D. Ivanenko, A. M. Kulik and H. Masuda. Uniform LAN property of locally stable Lévy process observed at high frequency. ALEA Lat. Am. J. Probab. Math. Stat. 12 (2015) 835–862.
  • [12] J. Jacod. The Euler scheme for Lévy driven stochastic differential equations: Limit theorems. Ann. Probab. 32 (2004) 1830–1872.
  • [13] J. Jacod and P. Protter. Discretization of Processes. Stochastic Modelling and Applied Probability 67. Springer, Heidelberg, 2012.
  • [14] J. Jacod and M. Sørensen. A review of asymptotic theory of estimating functions. Stat. Inference Stoch. Process. 21 (2018) 415–434.
  • [15] R. Kawai and H. Masuda. On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling. Statist. Probab. Lett. 81 (2011) 460–469.
  • [16] R. Kawai and H. Masuda. Local asymptotic normality for normal inverse Gaussian Lévy processes with high-frequency sampling. ESAIM Probab. Stat. 17 (2013) 13–32.
  • [17] M. Kessler and M. Sørensen. Estimating equations based on eigenfunctions for a discretely observed diffusion process. Bernoulli 5 (1999) 299–314.
  • [18] A. Kulik. On weak uniqueness and distributional properties of a solution to an SDE with $\alpha$-stable noise, 2015. Available at arXiv:1511.00106v1.
  • [19] H. Luschgy and G. Pagès. Moment estimates for Lévy processes. Electron. Commun. Probab. 13 (2008) 422–434.
  • [20] H. Masuda. Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density. J. Japan Statist. Soc. 39 (2009) 49–75.
  • [21] H. Masuda. Non-Gaussian quasi-likelihood estimation of SDE driven by locally stable Lévy process. Stochastic Process. Appl. To appear, 2018.
  • [22] P. A. Meyer. Les résultats récents de Burkholder, Davis et Gundy. In Séminaire de Probabilités, VI (Univ. Strasboug, année universitaire 1970–1971) 151–158. Lecture Notes in Math. 258. Springer, Berlin, 1972.
  • [23] M. Sørensen. On asymptotics of estimating functions. Braz. J. Probab. Stat. 13 (1999) 111–136.
  • [24] V. Todorov. Jump activity estimation for pure-jump semimartingales via self-normalized statistics. Ann. Statist. 43 (2015) 1831–1864.
  • [25] V. Todorov and G. Tauchen. Limit theorems for power variations of pure-jump processes with application to activity estimation. Ann. Appl. Probab. 21 (2011) 546–588.