Algebraic & Geometric Topology

Sign refinement for combinatorial link Floer homology

Étienne Gallais

Full-text: Open access

Abstract

Link Floer homology is an invariant for links which has recently been described entirely in a combinatorial way. Originally constructed with mod 2 coefficients, it was generalized to integer coefficients thanks to a sign refinement. In this paper, thanks to the spin extension of the permutation group we give an alternative construction of the combinatorial link Floer chain complex associated to a grid diagram with integer coefficients. In particular we prove that the sign refinement comes from a 2–cohomological class corresponding to the spin extension of the permutation group.

Article information

Source
Algebr. Geom. Topol., Volume 8, Number 3 (2008), 1581-1592.

Dates
Received: 4 July 2007
Revised: 30 May 2008
Accepted: 3 August 2008
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513796898

Digital Object Identifier
doi:10.2140/agt.2008.8.1581

Mathematical Reviews number (MathSciNet)
MR2443255

Zentralblatt MATH identifier
1149.57043

Subjects
Primary: 57R58: Floer homology

Keywords
link floer homology sign refinement

Citation

Gallais, Étienne. Sign refinement for combinatorial link Floer homology. Algebr. Geom. Topol. 8 (2008), no. 3, 1581--1592. doi:10.2140/agt.2008.8.1581. https://projecteuclid.org/euclid.agt/1513796898


Export citation

References

  • B Audoux, Heegaard–Floer homology for singular knots (2007)
  • D Ellwood, P Ozsváth, A Stipsicz, Z Szabó (editors), Floer homology, gauge theory, and low-dimensional topology, American Mathematical Society, Providence, RI (2006)
  • P Ghiggini, Knot Floer homology detects genus-one fibred knots (2006)
  • G Karpilovsky, The Schur multiplier, London Mathematical Society Monographs. New Series 2, The Clarendon Press Oxford University Press, New York (1987)
  • C Manolescu, P Ozsváth, S Sarkar, A combinatorial description of knot Floer homology (2006)
  • Y Ni, Knot Floer homology detects fibred knots, Invent. Math. 170 (2007) 577–608
  • P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311–334
  • P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58–116
  • P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. $(2)$ 159 (2004) 1027–1158
  • P Ozsváth, Z Szabó, Holomorphic disks and link invariants (2005)
  • J Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003)