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Sign refinement for combinatorial
link Floer homology

ETIENNE GALLAIS

Link Floer homology is an invariant for links which has recently been described
entirely in a combinatorial way. Originally constructed with mod 2 coefficients, it was
generalized to integer coefficients thanks to a sign refinement. In this paper, thanks
to the spin extension of the permutation group we give an alternative construction
of the combinatorial link Floer chain complex associated to a grid diagram with
integer coefficients. In particular we prove that the sign refinement comes from a
2—cohomological class corresponding to the spin extension of the permutation group.

57R58

1 Introduction

Heegaard-Floer homology (Ozsvath—Szabé [9]) is an invariant for closed oriented
3-manifolds which was extended to give an invariant for null-homologous oriented
links in such manifolds called link Floer homology (Ozsvith—Szabé [8; 10], Rasmussen
[11]). It gives the Seifert genus g(K) of a knot K (Ozsvath—Szabé [7]), detects fibered
knots (Ghiggini [2] in the case where g(K) = 1 and Ni [6] in general) and its graded
Euler characteristic gives the Alexander polynomial [8; 11]. Recently, a combinatorial
description of link Floer homology was given (Manolescu—Ozsvath—Sarkar [4]) and its
topological invariance was proved in a purely combinatorial way (Manolescu—Ozsvath—
Sarkar-Thurston [5]). The purpose of this paper is to give an alternative description
of combinatorial link Floer homology with Z coefficients. This point of view was
recently used by Audoux [1] to describe combinatorial Heegaard—Floer homology for
singular knots.

Let first recall the context of combinatorial link Floer homology: we follow conventions
of [5]. A planar grid diagram G lies in a square on the plane with n X n squares where
n is the complexity of G. Each square is decorated with an X', an O or nothing in
such a way that each row and each column contains exactly one X and one O. We
number the X" and the O from 1 to n and denote X the set {X;}7_, and O the set
{0i}}

i=1"
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Given a grid diagram G, we place it in standard position on the plane as follows: the
bottom left corner is at the origin and each cell is a square of length one. We construct
a planar link projection by drawing horizontal segments from the O to the X in each
row and vertical segments from the X to the O in each column. At each intersection
point, the vertical segment is over the horizontal one. This gives an oriented link f in

S3 and we say that f has a grid presentation given by G .

X 1O
O] |X
O] |X
X 1O

Figure 1: Grid presentation of the Hopf link.

We place the grid diagram on the oriented torus 7 by making the usual identification
of the boundary of the square. We endow 7  with the orientation induced by the planar
orientation. Let be the collection of the horizontal circles and the collection of the
vertical ones. We associate with G a chain complex (C~,d7): it is the group ring
of &, over Z/2Z[Ug,,...,Ug,] where &, is the permutation group of n elements.
A generator x € &, is given on G by its graph: we place dots in points (i, x(i)) for
i =0,...,n—1 (thus the fundamental domain of G is the square minus the right
vertical segment and the top horizontal segment).

For A, B two finite sets of points in the plane we define Z(A4, B) to be the number of
pairs (ay,a,) € A and (by,b,) € B such that a; < by and a, < b,. Let J(4, B) =
(Z(A, B)+ZI(B, A))/2. We provide the set of generators with a Maslov degree M
given by

Mx)=TJx—0,x—0)+1

where we extend 7 by bilinearly over formal sums (or differences) of subsets. Each
variable Up, has a Maslov degree equal to —2 and constants have Maslov degree equal
to zero. Let Mg(x) be the same as M (x) with the set .S playing the role of O.

We provide the set of generators with an Alexander filtration 4 given by A(x) =
(A1(x),...,A;(x)) with

ni—1
2

Ai(x) = T (x— L (X + ), X; — Op) —
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where when we number the components of E’ from 1to £, O; C O (resp. X; C X)

is the subset of O (resp. X) wich belongs to the i th component of Z’ and n; is
the number of horizontal segments which belongs to the ith component. We let
AUp;) = (0,...,—1,0,...,0) where —1 corresponds to the i th coordonate if O;

—
belongs to the i th component of L .

Given two generators x and y and an immersed rectangle r in the torus whose edges
are arcs in the horizontal and vertical circles, we say that r connects X to y if y.x !
is a transposition, if all four corners of r are intersection points in x Uy, and if we
traverse each horizontal boundary component of r in the direction dictated by the
orientation of r induced by 7, then the arc is oriented from a point in x to the point
in y. Let Rect(x,y) be the set of rectangles connecting x to y: either it is the empty
set or it consists of exactly two rectangles. Here a rectangle r € Rect(x,y) is said to
be empty if there is no point of X in its interior. Let Rect®(x,y) be the set of empty

rectangles connecting X to y.

ESZe
N X
Or %
NeZ

Figure 2: Rectangles. We mark with black dots the generator x and with
white dots the generator y. There are two rectangles in Rect(x, y) but only
the left one is in Rect®(x,y).

The differential 07: C~(G) — C~(G) is given on the set of generators by
=YY wQO gy
YEG, r€Rect®(x,y)
where O;(r) is the number of times O; appears in the interior of r.
Theorem 1.1 (Manolescu—Ozsvéath-Sarkar [4]) (C~(G), d7) is a chain complex for
CF~(S?) with homological degree induced by M and filtration level induced by A
which coincides with the link filtration of CF~(S?).

In [5], the authors define a sign assigment for empty rectangles S: Rect® — {+1}.
Then, by considering C~(G) the group ring of &, over Z[Up,,...,Up,] and the
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differential 0—: C~(G) — C~(G) given by
x=3Y Y SOUIV . udVy

YEG, r€eRect®(x,y)

they obtain the following result.

Theorem 1.2 (Manolescu—Ozsvath—-Szabé—Thurston [5]) Let I) be an oriented link
with { components. We number the O so that Oy, ..., Oy correspond to the different
components of f Then the filtered quasi-isomorphism type of (C~(G),d™) over
ZUg,,...,Ug,] is an invariant of the link.

In this paper, we give a way to refine the complex over Z thanks to gn the spin
extension of G, which is a non-trivial central extension of S, by Z/2Z. In Section
2 we define the spin extension gn and make some algebraic calculus. Let z be the
unique non-trivial central element of 6,, and A = Z[UOl ,...,Up,]. In Section 3 we
define a filtered chain complex (C (G), 9 ) where C~ (G) is the quotient module of
the free A—module with generating set 6,, by the submodule generated by {z + 1}.
Finally, in Section 4, we prove that our chain complex defines a sign assignment in the
sense of [5] and that (5 —(G), 5_) is filtered quasi-isomorphic to (C~(G), 07) with
coefficients in Z.

2 Algebraic preliminaries

Let G, be the group of bijections of a set with n elements numbered from 0 to n —1.
It is given in terms of generators and relations where the set of generators is {7;}7_ g
with 7; the transposition which exchanges i and i + 1 and relations are

rl-2=1 0<i<n-2
5.7 =11 |[i—j|>1, 0=<i,j<n-2

Ti.Ti+1.Ti = Ti+1.Ti-Ti+1 0=<i <n-3.

Theorem 2.1 The group given by generators and relations

Gn=<T7,...,Tp—2,2| 22=1,z"f,~="f,-z,”f2—z 0<i<n-2;
5.7 =z7.T |i—j|>1, 0=<i,j<n-2;
A‘L"’l.%’i_}_l.%’i: Ti+1- ‘L'l ‘EH_] 0<i<n-3>

is a non-trivial central extension (n > 4) of G, by 7Z /27 called the spin extension of
6n .
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Remark 2.2 A proof of this theorem can be found in Karpilovsky [3, Theorem 2.12.3].
To see that it is a non-trivial extension, one can notice the following: let Qg be the
subgroup of Sy generated by Ty, 75, z. Then Qg is isomorphic to the unit sphere in
the space of quaternions intersected with the lattice Z* by a morphism ® such that
O(ty) =i, D(Tp) = j, O(79.72) = k and ®(z) = —1. Therefore S, is non-trivial.

Remark 2.3 Cases n =2 and n = 3 are not interesting in our situation: the only knot
which can be represented by a grid diagram of complexity 2 or 3 is the trivial knot.
Nevertheless, the group given by generators and relations above still exists: in the case
n = 2, it is isomorphic to Z/4Z, in the case n = 3, it is isomorphic to a subgroup of
GL(2,C) (see [3, Lemma 2.12.2]).

For i < j, define
Ti,j =T - Ti41- -+ Tj—2.Tj—1.Tj—2. ... .Ti41.Tj
and Tj; =27 ;.

Let e: &, — {0, 1} be the signature morphism.

Lemma24 LetX=71;,.T,..... 7j, be an element in @n and x = p(X) € &,. Then
forany 0<ij # j <n—1

X.Tj, x= ZS(X)"EX(,'),XU).
Proof Since X =7;,.7i,..... Tije s 1= ZE(X)?ik ..... i, . We prove by induction on
k > 1 that for any i, j €{0,...,n—1} we have X.7; ; X ! = zs(x)?x(i),x(j).

o Initialization LetX=7 and 0<i<j<n—1.S07, ' =27 and e(x) = 1.
There are several cases.
— Casel: /I <i—lorl>j X7, ;z2X=z7;.
— Case2: /=i—-1 X7 ;2X=1727,_1.7,;.T,—1 = zT;—1,; by definition.
— Case3: /=i 7;.7;.2Ti =zTi41,j-
— Cased: i </ < j—1 Weprove by inductionon / —i > 1 for i, j fixed
that 7;.7; j.2T] = zT,(;),¢(j)- For [ =i + 1 then we have

Ti+1-T,j-2Ti+1 = Z0.Ti41. 1. Ti42,j-Ti-Ti+1-Tj

= Z2T0-Ti+1-Ti+2,j-Ti+1-T
= ITj.
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Suppose it is proved until rank (/ —1) —i. Then for X =7; with / < j —1
we have
X.7.2X = 271.5,;.7
= Z("I\,:l ..... ?1—2)'(?1'?1—1'?l)"fl—l,j'(?l"fl—l'?l)'(’fl—Z ..... "El)

= Z("EI ..... ?1—2)-(?1—1~’fl-?l—1)~?l—1,j-(?l—l-?l-?l—l)-(?l—Z ..... %{l)
= z(T..... T—1.7).T—1,; (T Tp=1- - - .- 7;) by induction
= z(T..... ?]_1).?1’j (T—q... .. 7;) by induction

= zT;,j by case 2.

— CaseS5:/=j—-1

’fj—l-:Ei,j-Z:Ej—l ZZ(?I' ..... %}—3)-%}'—1-@—2@—1@—2-@—1-(@—3 ..... "EI)
= Z:Ei,j—l .
— Case6: [ =
7.5, = 2(Ti. . . ... Ti—2).T.T-1.7.(Tj—2. . . .. Ti)
=ZTjj+1-
e Heredity Suppose the property is true until rank k. Let X = 7;,.7j,. .. .. T,
and 7; ; be two elements in @n Denote y = Tj,. . ... i, - Then X.7; ; X 1=

%,.¥.7:,;.¥ 1.z, . By induction hypothesis,

V75,5 =29%6)40)-

1

So,X.7; X ' =71, .ZE(Y).?y(i),y(j) .zT;, . By induction hypothesis one more time,

<= =1 _ _ey+lz e =
X.T,j.X =z Try y(@)miy ¥(G) = 2777 Tx(@)x() - =

The group gn has another presentation in terms of generators and relations. Take
{zyu{T j}# j where 0 <i, j <n—1 as the set of generators with the following
relations:

/ ~/

r_ T I~ ) = I ~ 7 ..
2-D zz=1 27 ,;,=75;2 §;=2%,; ;5 ;=z foranyi,j
~/ ~/ 1~/ ~/ . . . . .
2-2) T Tkl =2 Ty T forany i, j, k,lif{i,j}ni{k,[} =2
~ o~ o~ ~ o~ o~ ~/ PR
(2-3) TGkt = Ykl Lk = Lk forany i, j, k.

Proof Let @n the group with z and 7; as generators and é; the other one. Define
¢: &, — &), given on generators by ¢(7;) =T}, , |, ¢(z) = z'. Fori < j, let
¢(Ti,j) =7 ;- By definition, (2-1) is verified. Lemma 2.4 gives equations (2-2) and
(2-3). So the map ¢ extends to a group isomorphism. m|

Algebraic & Geometric Topology, Volume 8 (2008)



Sign refinement for combinatorial link Floer homology 1587

In what follows, we drop the prime exponent and only refer to 7; ; and z (7; means
Tiit1)-

3 The chain complex

Let G be a grid presentation with complexity n of the link Z) Let A denote the ring
Z[Uo,,...,Up,]. We define C (G) to be the free A—module with generating set

~

&, quotiented by the submodule generated by {z + 1} ie
C (G)=A[G,)/ <z+1>.

Considered as module, C (G) coincides with the free A—module with generating
set &, . But we can also consider the structure of algebra of Cc " (G) over A. In this
case, one can think of C " (G) as the group algebra of &, over A where the product
is twisted by a non-trivial 2—cocycle (see Section 4).

We endow the set of generators with a Maslov grading M and an Alexander filtration
A given by M (X) = M (x) and A(X) = A(x).

Let X be an clement of &, and let Rect(X) be the set of rectangles starting at X: by
definition it is the set {Tj j }o<;j<n—1. If We consider the set Rect(X,¥) of rectangles
connecting X to y (where y =x.7; ;) as in [5], either it is the empty set, or it consists of
two rectangles. We interpret the rectangle 7; ; in the oriented torus 7 as the rectangle
whose bottom left corner belongs to the ith vertical circle. So in the case where
Rect(x,y) = {r1,r2} the two corresponding rectangles are 7; ; and 7;; Let r be the
rectangle of Rect(x, y) corresponding to 7. A rectangle 7 € Rect(X) is said to be empty
if the corresponding rectangle r € Rect(x,y) is empty. The set of empty rectangles
starting at X is denoted Rect®(X).

We endow C (G) with a differential f given on elements of S by:

= Y ud? Oy
F7€Rect® (X)

where Oy (7) is the number of times Oy appears in the interior of r.

Proposition 3.1 The differential 9 drops the Maslov degree by one and respect the
Alexander filtration.

Proof It is a straightforward consequence of calculus done in [5]. O
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%02 ;/ )

N* 70,2

Figure 3: Rectangles. Black dots represent x and white dots y. The two
hatched regions correspond to rectangles 7y » € Rect(X) and 7,0 € Rect(X).
The rectangle Ty, is an empty rectangle while 7, ¢ is not.

Proposition 3.2 The endomorphism 9~ of C " (G) is a differential, ie

0 0d =0.

Proof Let X=s(x) € G, viewed as a generator of Cc " (G). Then

- 05— (i) — Z Z UOOII (F1)+01(72) L U00: )+ 0n(72)_§.;;1 ";72.
72 €Rect® (X.77) 71 €Rect® (%)

There are different cases which are illustrated by Figure 4.

Cases 1,2 The rectangles corresponding to 7; ; and Ty ; give the elements Z; =
X.Tk .7, and Z; =X.7;,j.Tx,; . By equation (2-2) contribution to 900 (X) is null.

Case 3 Supports of the rectangles have a common edge. The two corresponding
elements are Z; =X.7;,;.7;  and Z; =X.T; x.T;,; with i < j < k. By equation (2-3),
71 = zZ, and so the contribution is null. Other cases work in a similar way.

Case4 The vertical annulus is of width 1 and corresponds to Z; = Ug,, X.7;.7; (itis
a consequence of the condition on rectangles to be empty).

To this vertical annulus corresponds the horizontal annulus of height 1 which contains
Op. This horizontal annulus contributes for Ug,, X.7; x.Tx,; = Uop,, X for a pair
k <l€{0,...,n—1}. So, the contribution of each vertical annulus is canceled by the
corresponding horizontal annulus. The global contribution to 900 (X) isnull. O
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Figure 4: 9709 =0.

4 Sign assignment induced by the complex

In this section we prove that the chain complex c "~ (G) coincides with the chain
complex C~(G) over Z after a choice of a sign assignment.

Definition 4.1 A sign assigment is a function S: Rect® — {41} such that
(Sq) for any distincts 7y, 72,7, r5 € Rect® such that ry % r, = r{ * r;, we have
S(r1).S(r2) = =S(r7).S(r5),
(V) if r{,ry € Rect® are such that r; % 5 is a vertical annulus then
S(r1).S8(r2) = -1,
(H) if r{,r, € Rect® are such that r; * r, is a horizontal annulus then

S(r1).S(rp) = +1.

Algebraic & Geometric Topology, Volume 8 (2008)
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Let s: 6, — gn be a section of the map p thatis pos =idg,.

~ P

S —=
s

| —>17/22"

G 1

To define the sign assignment we need the 2—cocycle ¢ € C?(&,,Z/27) associated
to the map s given by

(4-1) 5(x).5(y) = (i oc(x,y))s(x.y).

The cohomological class of ¢ measures how s fails to be a group morphism. In
particular, it is non-trivial (n > 4) since G, is a non-trivial central extension of &, by
7]27.

We say that a rectangle r is horizontally torn if given the coordinates (ip;, jp;) of its
bottom left corner and (is,, j;») of its top right corner then ip; > is,. Otherwise, r is
said to be not horizontally torn.

Lemma 4.2 The complex (5 (G), 5_) induces a sign assignment in the sense of
Definition 4.1: for all (x,y) € &2 and all r € Rect®(x, y)

4-2) S(r) = s(r).c(x_l.y,x)

where ¢(r) = +1 if r is a rectangle not horizontally torn and ¢(r) = —1 otherwise.

Remark The sign assignment in the sense of Definition 4.1 is unique up to a 1-
coboundary: if S; and S, are two sign assignments then there exists an application
[ &, — {£1} such that for all rectangles r € Rect®(x,y), S1(r) = f(x). f(y).S2(r).
It is a consequence of the fact that the central extension corresponds to a 2—cohomo-
logical class in H?(S,,Z/27) (compare with [5, Theorem 4.2]). Here, we construct
explicitely a map s: &, — %n such that p os = id which means making a choice of a
representative of this class, another choice must differ by a 1-coboundary.

Proof Since ¢ is 2—cocycle we have §c = 1 ie for all (x,y,z) € &3

dc(x,y,z) =c(y,z).c(xy,z).c(x,y.z).c(x,y) = 1.

By definition we have ¢(x,1) = ¢(1,x) =1 and ¢(7;,j, 7;,j) = —1. Let’s prove that S
satisfy properties (Sq), (V) et (H).

(Sq) Letany four distincts rectangles S 7,72, 7, r; € Rect® such that ry *ry =r{ *r;.
Suppose T;,; = 71 € Rect®(X) corresponds to 7y and Ty ; = 7> € Rect®(X.7;, ;)
corresponds to r,. Then 7| = T ; € Rect®(X) corresponds to r{ and 75 =7; ; €
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Rect®(X.7 ) corresponds to ré. There are several cases to verify, as for the
proof of 9~ 00~ = 0 but all cases can be verified in a similar way. We verify
the case i < j <k <. We calculate dc(zx s, 77,7, X) and 6¢(ti, j, T 1, X). With
equalities ¢(z;,j.7x,7.X) = ¢(tx,1.7i,7,X) and c(zi,j. T, 1) = —C(Tk 1. Ti,j) We
get

S(r1).S(r2) = =S(r7).S(r5).

(V) Let r1,r, € Rect® such that rq * r; is a vertical annulus. Suppose that 7; = 7; €
Rect®(X) corresponds to 1y and 7, = T; € Rect®(X.7;) corresponds to r,. We
calculate §c(z;, 7;, X) and with equalities ¢(x,1) =1, ¢(1;, 1) = —1 we get

S(I’l).S(Vz) =—1.

(H) Let rq,r, € Rect® such that r{ * r, is a horizontal annulus (of height one).
Suppose 71 = T;,j € Rect®(X) corresponds to r; and 7, = T, ; € Rect®(X.7;,;)
corresponds to r,. We calculate dc(t; j, 7;,j, X) and with equalities ¢(x,1) =1,
c(ti,j, i,j) = —1 we get

S(r1).S(rp) = +1. O

Proposition 4.3 The filtered chain complex (5 (G), 5_) is filtered isomorphic to
the filtered chain complex (C~(G),d7).

Proof The map s: G, — Sy extends linearly with respect to Z[Uy, . .., U,] uniquely
toamap s: C~(G) - C~ (G) which is an isomorphism of modules. It commutes
with the differentials ie s 0 9~ = 0~ o s where the sign assignment S is given by
equation (4-2). By definition, s respects the Alexander filtration and the Maslov
grading. So s defines a filtered isomorphism between the complexes (C~(G), 0™ ) and
(C(G), ). O

A consequence of the above proposition and [5, Theorem 1.2] is the following.

%
Corollary 44 Let L be an oriented link with { components. We number the O

so that Oq, ..., Oy correspond to the different components of I) Then the filtered
quasi-isomorphism type of (C~(G),0™) over Z[Ug,, ..., Ug,] is an invariant of the
link.

Remark The proof of this theorem can also be done by adaptating the original proof
in [5], sometimes with slightly simplified arguments.
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