Acta Mathematica

Functors whose domain is a category of morphisms

Irwin S. Pressman

Full-text: Open access

Abstract

Connected sequences of functors whose domain, is the category of morphisms of an arbitrary abelian categoryA and whose range categoryB is also abelian are compared with the composition functors of Eckmann and Hilton acting between the same categories Sequences of functors of both types are obtained from any half-exact functorA→B ifA has enough injectives and projectives.

Note

This revised version was published online in November 2006 with corrections to the Cover Date.

Article information

Source
Acta Math., Volume 118 (1967), 223-249.

Dates
Received: 18 January 1967
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485889516

Digital Object Identifier
doi:10.1007/BF02392482

Mathematical Reviews number (MathSciNet)
MR213415

Zentralblatt MATH identifier
0163.01506

Rights
1967 © Almqvist & Wiksells Boktryckeri AB

Citation

Pressman, Irwin S. Functors whose domain is a category of morphisms. Acta Math. 118 (1967), 223--249. doi:10.1007/BF02392482. https://projecteuclid.org/euclid.acta/1485889516


Export citation

References

  • Cartan, H. & Eilenberg, S., Homological algebra. Princeton University Press, 1956.
  • Dold, A., Universelle Koeffizienten. Math. Z., 80 (1962), 63–88.
  • Eckmann, B. & Hilton, P. J., Composition functors and spectral sequences. Comment. Math. Helv., 41 (1966–67) 187–221.
  • Eckmann, B. & Kleisli, H., Algebraic homotopy groups and Frobenius algebras. Illinois J. Math., 6 (1962), 533–552.
  • Eilenberg, S. & Moore, J. C., Foundations of relative homological algebra. Memoirs A.M.S. 55, 1965.
  • Freyd, P., Abelian categories. Harper and Row, New York, 1965.
  • Grothendieck, A., Sur quelques points d'algèbre homologique. Tôhoku Math. J., 9 (1957), 119–227.
  • Hilton, P. J., Homotopy theory and duality. Gordon and Breach, New York, 1965.
  • Hilton, P. J., Correspondences and exact squares. Proc. Conf. Cat. Alg., La Jolla. Springer, 1966.
  • Hilton, P. J. & Pressman, I. S., A generalization of certain homological functors. Ann. Mat. Pura Appl. (IV) 71 (1966), 331–350.
  • Kleisli, H., Homotopy theory in abelian categories. Canad. J. Math. 14 (1962), 139–169.
  • MacLane, S., Homology. Springer, Berlin, 1963.
  • Mitchell, B., Theory of categories. Academic Press, New York, 1965.
  • Pressman, I. S., A comparison of two functors in homological algebra. Doctoral dissertation, Cornell Univ., 1965.