Acta Mathematica

Functors whose domain is a category of morphisms

Irwin S. Pressman

Full-text: Open access


Connected sequences of functors whose domain, is the category of morphisms of an arbitrary abelian categoryA and whose range categoryB is also abelian are compared with the composition functors of Eckmann and Hilton acting between the same categories Sequences of functors of both types are obtained from any half-exact functorA→B ifA has enough injectives and projectives.


This revised version was published online in November 2006 with corrections to the Cover Date.

Article information

Acta Math., Volume 118 (1967), 223-249.

Received: 18 January 1967
First available in Project Euclid: 31 January 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

1967 © Almqvist & Wiksells Boktryckeri AB


Pressman, Irwin S. Functors whose domain is a category of morphisms. Acta Math. 118 (1967), 223--249. doi:10.1007/BF02392482.

Export citation


  • Cartan, H. & Eilenberg, S., Homological algebra. Princeton University Press, 1956.
  • Dold, A., Universelle Koeffizienten. Math. Z., 80 (1962), 63–88.
  • Eckmann, B. & Hilton, P. J., Composition functors and spectral sequences. Comment. Math. Helv., 41 (1966–67) 187–221.
  • Eckmann, B. & Kleisli, H., Algebraic homotopy groups and Frobenius algebras. Illinois J. Math., 6 (1962), 533–552.
  • Eilenberg, S. & Moore, J. C., Foundations of relative homological algebra. Memoirs A.M.S. 55, 1965.
  • Freyd, P., Abelian categories. Harper and Row, New York, 1965.
  • Grothendieck, A., Sur quelques points d'algèbre homologique. Tôhoku Math. J., 9 (1957), 119–227.
  • Hilton, P. J., Homotopy theory and duality. Gordon and Breach, New York, 1965.
  • Hilton, P. J., Correspondences and exact squares. Proc. Conf. Cat. Alg., La Jolla. Springer, 1966.
  • Hilton, P. J. & Pressman, I. S., A generalization of certain homological functors. Ann. Mat. Pura Appl. (IV) 71 (1966), 331–350.
  • Kleisli, H., Homotopy theory in abelian categories. Canad. J. Math. 14 (1962), 139–169.
  • MacLane, S., Homology. Springer, Berlin, 1963.
  • Mitchell, B., Theory of categories. Academic Press, New York, 1965.
  • Pressman, I. S., A comparison of two functors in homological algebra. Doctoral dissertation, Cornell Univ., 1965.