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Connected sequences of funetors whose domain is the category of morphisms of an 

arbitrary abelian category .,,4 and whose range category B is also abelian are compared 

with the composition functers of Eckmann and Hilton acting between the same categories 

Sequences of functors of both types are obtained from any half-exact functor z4-+ B if ,~ 

has enough injectives and projectives. 

1. Introduction 

I t  was observed by  Eckmaun and Hilton that  the homotopy sequence of a triple 

could be generalized to the following situation: let the pair of maps (it, g) 

x L r ~ z (1.1) 

be any two composable, base-point preserving maps of topological spaces. There is then a 

long exact sequence (1.e.s.) of homotopy groups 

con ...-~ :~(/) ~ ~ ( g / ) -  ~(g) - ~ _ ~ ( / ) - . . . .  (1.2) 

co n can be thought of as either a natural transformation between two appropriate functors 

which behaves properly under maps of pairs, or as a functor from the category whose 

objects are the eomposable pairs (/, g) to the category of morphisms of abelian groups. 

The latter is preferable. In  [3] they generalized this notion of functor as follows: let C 

be any category, C ~ the category of morphisms of C, C a the category whose objects are 

the eomposable pairs (it, g) of maps of C, and B an arbitrary abelian category. Let  ~: C ~ ~ B 

be a graded functor, that  is, ~r ={~n: C2--* B, nEZ}. Let co: C 8-+ ~ be a graded functor such 

that  to each (j t, g) E C 8 there exists a 1.e.s. of the form (1.2) in B. The pair (~, co) was called 
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a composi t ion functor  in [3], bu t  is called an  E c k m a n n - H f l t o n  functor  ( E - H  functor)  

f rom C s to ]g here. For  a n y  E - H  funetor  (~, ~o) it can easily be shown t h a t  ~n(e) = 0  for all 

n and  every  equivalence e of C. 

A connected sequence of funetors  is defined in [2] to be a graded funetor  a :A-~ ig ,  

for abel ian categories A and B, together  with a graded  na tu ra l  t r ans format ion  0 wi th  the  

following propert ies:  to each short  exact  sequence (s.e.s.) of A there  is the  usual  1.e.s. of 

B, and  ~ behaves  p roper ly  under  maps  of s.e.s.'s. The  role of ~ can be best  expressed b y  

defining ~ to be a functor  f rom the  ca tegory  of s.e.s. 's of A to B s. Each  an mus t  be a half- 

exact  funetor.  Grothendieck [7] gives the  name  homological  functors  to connected sequences 

of functors ,with the  convent ions used in [2], so the  pair  (g, ~) is called a homologieal  funetor  

(h-funetor) f rom A to ~g. 

These two notions of functor  are dis t inct ly different because t hey  require  to ta l ly  

different  kinds of objects  to manufac tu re  connecting homomorph i sms  and 1.e.s.'s. E v e n  

if (~, co) and  (a, a) are respect ively  an  E - H  functor  and  an  h-functor  f rom the abel ian 

ca tegory  M s to B, ~o acts  on pairs  (], g) of A 8, while ~ acts  on s.e.s. 's of M s. 

Tha t  is, given �9 ~ .  g .  (], g) E A s, then  there  is a l.e.s. 

(1.3) 

Given the  s.e.s. 5--->a~b~c~5 of M s, or 

then  there is a 1.e.s. 

0 

0 

la !~ 

�9 . . ~  an(a) ~ an(b) ~ an(c) ~ an-1 (a) ~ . . . .  (i .4) 

The only general  requi rement  on the  domain  ca t ego ry  for an E - H  functor  is t h a t  it be 

a ca tegory  of morphisms;  the  only requ i rement  for an  h-funetor  is t h a t  the  domain  be an 

abel ian category.  One of the  interests  of this pape r  is to s tudy  how these concepts  re late  

when the  domain  is A s. T h a t  is, if (g, w):As~ B is an E - H  funetor,  can a a '  be defined so 

t h a t  (~, ~') is an  h-functor  ? I f  there  is a ~' such t h a t  (g, ~') is an  h-funetor ,  then  r~ mus t  be 

half-exact .  Conversely it is p roven  t h a t  if g is half-exact ,  then  a a '  can he explici t ly given 

in t e rms  of g and  ~o such t h a t  (g, ~') is an  h-functor .  Conversely,  g iven an  h- functor  (a, ~) 

f rom M s to B, a functor  co' : A a--> ~2 can be explici t ly cons t ruc ted  f rom a and  ~ such t ha t  

(a, ~o') is an  E - H  functor  iff an(l) = 0  for every  n and  every  ident i ty  m a p  of A. Moreover,  
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a'  (respectively co') is uniquely determined by  the property tha t  ~' (respectively ~) on the 

trivial s.e.s. (2.10) is equal to co(0A, A0) (respectively ~o'(0A, A0)) for each A. These results 

are proven in section 3. 

A concept of excision in preadditive categories is introduced in section 2. The special 

relationship of this property to E - H  functors is explored. Section 4 contains several 

examples and counterexamples. In  4.A it is shown how one can totally avoid using the 

category of relations in obtaining the ker-coker sequence. 

In  section 5 the injectives of a category A ~ are proven to be precisely the maps iso- 

morphic to maps of the type 
(1, o ) : I @ J ~ I  

where I and J are both injectives of A. A has enough injectives iff A u has enough injectives. 

Let  @0:A-~ B be any half-exact functor, and assume tha t  A has enough injectives and 

projectives. All the satellites Sn@o can be found and together they give an h-functor (@, e). 

Let a : A - ~  A 2 be the embedding functor given by  a (A)=  0A, the unique map from 0 to A. 

A half-exact functor @'0:A ~-~ B is then defined together with a natural  epimorphism of 

functors @0-~ @'0 a which extends uniquely to a natural  transformation of satellite h-functors 

(@, e)-~ (@'a, e 'a ') .  I t  follows directly from the definition tha t  

(a) @'o(P)=0 for every projective p of A ~, 

(b) @'o(1A) = 0  for every A of A, 

(c) the induced map @n-~@'~a is a natural  equivalence for n < 0 .  Furthermore,  @'o is 

the unique half-exact functor satisfying these conditions. Also @'o(i)=0 for each injeetive 

i of A~; there exists an co' such that  (@', w') is an E - H  functor; and to each / one can produce 

a canonical C E A such that  @'~(/)~@n(C) for n <0.  

I f  in addition @o(P) = 0  for every projective P of •, then the map of satellite h-functors 

induced by  a is a natural  equivalence. In  this case one can' find a canonical D such tha t  

@',~(/)~-@n_l(D) for n > 0 .  This is contained in section 5. A weaker form of this result was 

obtained in [10] for the special case where @0 was the zero ' th projective homotopy group. 

The main technical difference is tha t  the emphasis has been shifted from derived functors 

to satellite functors. 

Some of the results of this paper appeared in the author's doctoral dissertation [14] at 
Cornell University. A portion of this research was partially supported by the National Science 
Foundation under grant No. NSF GP 3685. 

The author would like to express his sincere thanks to Prof. P. J. Hilton for many stimu- 
lating discussions during the course of the writing of his dissertation. His friendly assistance 
and encouragement throughout the writing of this paper were deeply appreciated. In  addition 
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the author would like to thank Prof. S. MacLane, whose suggestions led to a considerably im- 
proved formulation of the theorems, and Prof. S. Eflenberg, whose questions about uniqueness 
led to a significant improvement of the final results. 

2. Notation and terminology 

The terminology used for category theory is that  of MacLane [12]. The zero object 

of any preadditive category is denoted by 0, and 5:0-~0 is the unique map of horn(0, 0). 

Unless a functor is specifically said to be contravariant, it will be covariant. ,~ and 

will always represent two arbitrary but  fixed abelian categories. The zero element of 

horn(A, B) is denoted by AOB, and also (ambiguously) as o; A00 and 00B are shortened 

to A0 and 0B. The identity map 1A:A-~A is often written ambiguously as 1. The expres- 

sion short (long) exact sequence is abbreviated throughout to s.e.s. (1.e.s.). Denote the s.e.s. 

of A 

0 , A - - ~ d  B e , c  -0  (2.1) 

by dl]e. The category of all s.e.s.'s of A, Ses(A), is an additive category but  not  abelian. 

The category "2" has two objects, X and Y, and morphisms Ix, l r ,  and p:X-+ Y. 
The category "3" has objects U, V, and W, and morphisms lv, lv, 1w, r: U-~ V, q: V-~W, 
s=qr: U-+ W. If $ is a small category, then denote by C s the category whose objects are 

all the (covariant) functors $-~ C, and whose morphisms are the natural transformations 

of the functors. I t  has been proven that  if C is abelian, then so is C s [7, Prop. 1.6.1]. 

Notice that  2 s = 3. 

Therefore A s is an abelian category. Its objects are the morphisms/ ,  g, h . . . .  of A, 

its morphisms are pairs (]g):a-~b ofmorphismssuchthatb/=ga. (It)is a monlc (epic) 

of A ~ iff both / and g are monies (epics) of A. A s.e.s, of A s is always of the form (2.2), 

where dl]e , d'lle' , db =d'a, and ce =e'b. 

0 ,A  d . B  e . c  ,0 

0 ,A' d' e' ,B'  .0" .0 

(2.2) can also be wri t ten as d ]1 e' or 

5~a ~b~c-~5. (2.3) 

An object of C a consists of a pair of morphisms (/, g) such that  g] is defined. 
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A graded hmctor  v: C ~  means that  there is an ordered set of ftmetors zn: C -~ 

for all integers n, - ~ < n  < c~. If T is a graded functor, then T(C) =0  means that  vn(C) =0 

for every n. All the graded funetors that  are encountered here are assumed to be additive. 
A homological /unctor (h-ftmctor) is a pair (a, ~):~4~ ]~ of graded hmctors a: ~4 -> B 

and a: Ses(A)-~B ~ such that  to each s.e.s. (2.1) of ~4 there is a 1.e.s. in B 

�9 . . ~  an(A) an-~(d~) an(B) an(~ an(C)0n(d . . . .  (2.4) 

This is the usual connected sequence of functors [12, p. 386]. 

An Eclcmann-Hilton composition /unctor (E-H functor) is a pair (v, Co): C ~ B  of 

graded functors ~: C~-+ B and Co: C8-~ B 2, where C is any category, such that  to each ob- 

ject (/, g) of C a there is a 1.e.s. in B 

�9 ..--Vn(l) \-----g/~ Vn(gl) "en.~ ~n(g) Con(l, ~ ~n-i(/) --.... (2.5) 

I t  has been shown [3, Prop. 2.2] that  for any E - H  functor (~, co) as above, and any 

equivalence e of C, one has ~(e)=0. Assume that  C contains a zero object. The object 

(0Y, Y0) of C 8 gives 5 = 0 4  Y->O under composition, and since 5 is an equivalence one 

obtains the 1.e.s. with each ~j(5) =0  

. . . .  ~ n ( 6 ) - ~ n ( ] 7 0 ) - ~ _ l ( 0  r)-~n_l(6)-~ . . . .  

I t  follows that  w~(Y)=eon(OY, I70) is an isomorphism for all n. We shall call this process 

"flipping". Clearly there is a graded functor w: C-~B ~, and w will be used to represent 

the isomorphism win(X) for all X and m. I t  was also shown [3, Thm. 2.8] that  for any 

object (/, g) of C 3 of the form (1.1) one has 

COn(/, g) ='~n_l (OX1) wn ( Y) vn ( l o )  . (2.6) 

The map (/g):/--.'-g can be factored into (/1):/-->1 and (lg) : l ~ g .  Therefore ~n(/g) 

is the zero map of hom(~n(/), ~(g)) for all n, because it factors through ~n(1) =0. 

Any half-exact hmctor  between two abelian categories is additive. Therefore if (v, ~) 

is an h-functor, the graded ftmctor ~ is additive (i.e. each T~ is additive). If  (v, co) is an 

E - H  functor and if ~ is not additive, then there can be no a such that  (v, ~) is an h-functor. 

In  (4.C) an E - I t  functor which is not half-exact is introduced. 

In the following discussion 0 will always denote a preadditive category, ~ a subclass 

of ((/, g)]g/= 0}_ 0 a, and ~' the subclass ((/, g)]/l[g}. L e t / :  X-~ Y, g: Y->Z give an arbi- 
1 5 - -  672906 Acta  mathematica. 118. I m p r i m 6  le 2 0  juin 1967. 
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trary element (/, g) E E. If ~: D ~ B is any functor, then 9 is said to have the E left-excision 
property or simply E le]t.excision (respectively, the E right.excision property) if for each 

(I, g) e ,~ 
~ (:z):  ~(xo)-~o(g)(~ (x:)  : ~ (/)- q~(oz)) 

is an isomorphism. In section 3 ~ is abelian, E = E', and ~ is simply said to have left- or 

right-excision. 

If a and b are maps of 9 ,  then horn(a, b) in ~)~ is an abelian group under component- 

wise additon of morphisms. 

LEMVIA 2.7. Let (z, o9):O2-~B be an E-H /unctor, and assume that 7: is additive. Then 
7: has E le/t-excision i]/ 7: has ~ right.excision. I/7: is also a hal/-exact /unctor, then 7: has the E' 
le]t. and right-excision properties. 

Proo/. Take the objects (0X,/)  and (0 Y, g) of 0 8, and apply (7:, co) to form the diagram 

(2.8). The rows are exact, the first two squares commute, and the third square anticommu- 

tes. 

...---- 7:, ( o x )  - 7:, ( o r )  . 7 : ,  (]) 

�9 " .  " 7:n+1 (g) g'. (017) ~ ~n (OZ) 
1 

�9 7:._~ (O X)  , . . .  

1 

7:. (g) - - - . . .  

( 2 .8 )  

To check the anticommutativity notice t h a t ( ] g ) = ( ~ ) + ( ~ ) i n Z )  ~. ThereforeT:.(~)= 

7 :~(~)+7 :n (~)=obecause  7 : . i s a d d i t i v e f o r e a c h n .  B u t t h e  m a p s o f t h e t h i r d s q u a r e a r e  

7:.(OY1)7:n(X:)=7:.(~ ) and 7:.(:z)w-lwT:. ( y 0 ) = 7 : n  (~),  

C) Thus 7:. = -7 : .  , that  is, the square is anticommutative. 

If (] ,g)EE and 7: has E right-excision, then every map 7 : . ( X : ) i s  all isomorphism. 

By an argument analogous to that  of the 5-1emma, 7:. w -1 is an isomorphism for 
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each n. 

left-excision. The argument in the other direction is clear. 

Let/Jig and consider the s.e.s. (2.9) of ~ .  

o , x  t . y  g~z - -~o  

0 - - ~ 0  , - - ~ Z - - ~ O  

Since w -~ is an isomorphism, ~ ( : Z ) i s  also an isomorphism. That  is, v h a s s  

(2.9) 

If T is a half-exact fuactor, then from (2.9) there is the exact sequence of B 

~(x0) ~ ~n(g)~ ~(1) 

for each n. ~n(1)=0 because (3, w)is an E - H  ftmctor. Therefore z~ (0/Z) is an epimorphism. 

Dually is monic If one inserts thi  i ormation in (2.8) then by C12, Lemma I33  

For every A of an abelian category A, there is a s.e.s. (2.10) of A ~ which will be 

denoted by  sesIAI. 

0 ,0 , A - - ~ I ~ A - - ~ O  

1 1 [ --ses IA[ (2.10) 

0 , A - - ~ A  ,0 ,0  

If (v, ~) is an h-functor A2-~B, then there is a map On(ses[A]):vn(AO)"->v~_l(OA) of B. 

If (v, co):A~-~ B is an E - H  functor, then there is also a map osn(0A, A0):vn(A0)-~z,_l(0A} 

of B. This will be used in the next  section. 

3. Transmutation of functors 

If  (v, ~o) is an E - H  functor A2-~ B, then a complete answer is given to the problem of 

whether or not one can prescribe a ~ such that  (~, a) is an h-functor. The converse is also 

completely solved. (v, o)  and (z, 0) are really quite different kinds of funetors because 

they act on distinctly different diagrams of objects to get 1.e.s.'s in their range category. 

This is seen in (1.3) and (1.4). 
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If (v, to) is given, then the process of production of the functor a: Ses(A ~ ~ B ~ proceeds 

as follows: a rule is given which converts any s.e.s. (2.3) into a s.e.s. 

5-+a-~b' ~c '  ~ 5 ,  (3.1) 

where b' and c' are epic. A second rule converts (3.1) into a s . e . s .  

5-+a'-+b" ~c '  ~ 5  (3.2) 

where a' is monic and b" is an isomorphism. A commutative diagram (3.3) is then obtained. 

5 . a  ,b  , c - - ~ 5  

I1 I I 
5 . a  . b' , c r . 5  

I l l '  
5 . a ' - - ~ b "  .c' , 5  

(3 .3 )  

i _.>. r If  z is half-exact, then an isomorphism can be given Tn(c ) v~_l(a ). Using the maps in- 

duced by (3.3), then a is given by  

r t _ . ~  Tn(c)~v,(c )~v ,_ l (a  ) ~ - l (a ) .  

THEOREM 3.4. Let (% o~) be an E - H  /unctor A2-~B.  There is a unique graded/unctor 

~: Ses(~4~)-+~ ~ such that 8(ses]AI)=to(0A, AO) /or each A o/~4, and such that (v,O) i s a n  

h./unctor i/] ~ is a hall-exact ]unctor. 

Proo/. By {d, a}: A - ~ B ~ A '  we mean the map given by d : A ~ B ,  a : A - ~ A ' ,  and the 

universal property of direct sums. <c, e'> is obtained dually. Take any s.e.s. (2.2) of A u. 

By the rules which are implicitly contained within their diagrams, the s.e.s.'s (3.5) and 

(3.6) of A ~ are formed from (2.2). 

O - - A  ~ ~ x'=td'~ g = e ~ l  , C @ B ' - - O  

la  l b'=<b, 1> !c'=<c,e'> 

0 - -  A '  , B '  ~ G" . 0  
d ~ 6 ~ 

(3.5) 

0 , A l B ~ B ' .  g * C(3B" , 0 

,1~ 
0 - -  B @ A '  . B@B'  * O ' - - -  0 

/' = l ~ d '  g' = <e', o> 

(3.6) 

b" ={<1, o>, <b, 1>} has a two-sided inverse b* ={<1, o), < - b ,  1>}, so it is an isomorphism. 
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Also, b' and c' are epic, a' is monic. These s.e.s.'s correspond to (3.1) and (3.2). Define the 

maps 
p = ( o ,  1 ) : B |  

q = ( o ,  1 ) : B @ B ' ~ B '  

r = ( 1 ,  o } : B ~ B ~ B '  

8={1, o} :C~C@B' .  
(3.7) 

There a r e t h e n  t hemaps  ofs.e.s 's [(11) , ( ; ) ,  ( ; ) ] :  (2 .2)~(3 .5)and[~p) ,  

(3.6) ~ (3.5) which give the commutative diagram (3.3). 

(',)]: 

Clearly pa'=a,  qb'=b', b'r=b, and c's=c. 

Take the canonical factorization of the map gb*/' of (3.6) into an epic h and a monie k. 

That  is, gb*]' =kh. To see that  a'llh, notice first that  

kha' = gb*/' a' = gb* b' /= g/= o; 

and if hx=o for some map x, then gb*/'x =o. But since ]llg, there is a unique map x' such 

that  b*/'x=]x'. Therefore 

/'x = b"/x'=/'a'x', and since/ '  is monie, x = a'x'. 

That  is, each left annihilator of h factors through the monomorphism a', so a'llh. Dually 

bllc'. Let D denote the image of h. 

Let  us assume now that  v is a half-exact functor. By Lemma 2.7 one has for each 

s.e.s./llg of /1  the pair (/, g) E A a for which ~ has left- and right-excision. There are then well- 

defined isomorphisms 

'l~n : "En-1 w n ( D )  T'n : T'n(C') - -  ~ n - 1  (a t )  �9 (3 .8 )  

If one should choose some other canonical factorization of gb*/', such as (k', h', D'), 

then it can be immediately verified that  this gives the same v. Thus v depends only on the 

map gb*/which in turn depends only on the s.e.s. (2.3). I t  follows easily that  ~ is a well- 

defined function Ses(/12)->B ~. The proof that  v is a ftmctor is now easy. Moreover, since 

v and oJ are both additive by  hypothesis, then w is additive, and v is additive too. Also, 

r depends directly on co. 

a:Ses(A~)-~B u is given for any s.e.s. (2.3) by  

The proof that  0 is an additive funetor is straight-forward. 
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By  using the pair (3, O) a long sequence of objects and morphisms of ]g is obtained from 

each s.e.s. (2.3) of A s. (3, 0) is an h-functor iff every such sequence is exact. The exactness 

is first proved for all s.e.s.'s of the form (3.1). 

I t  is important to notice that  throughout this proof only the fact that  3 has left- and 

right-excision is really needed. One can, in fact, derive that  3 is half-exact from the following 

arguments and the assumption that 3 has excision. 

A ] , B @ B ' - - ~ g ~ C @ B  ' 

[a' Ib" c' 
B ~ A '  , B ~ B '  g , C ' 

d'  e' 
A '  ~ B ' ~ C '  

(3.10) 

If one examines the long sequence that  is obtained from the s.e.s. 6-+p-+q-~l-~6 

of A 2, it is clear that  the corresponding a must be zero because 3(1) =0. I t  is only necessary 

to prove that v,(p)-+3,(q) is an isomorphism for all n to have exactness of the long sequence. 

Define ]={1,  o } : B - + B @ A ' .  Then j]]p and ['j]]q. These give the maps B O ~ p ~ q  and the 

excision isomorphisms 3. ( ~ ) a n d  3. (/oi) Therefore 3. (~ ' , )= 3. ( /o~)3.  ( g ) - l :  3. (p) 

3.(q) is an isomorphism. 

Apply the E-I-I functor (3. w ) t o  the pairs of morphisms of the columns of (3.10). 

The columns of (3.11) represent a part  of what is obtained, where the maps correspond to 

those of (2.5). The horizontal maps are either induced by the pairs of the commutative 

diagram (3.10), or are given by the connecting homomorphisms o, v,, and 3,_1 (~) v,. With 

the possible exception of the third row, all the rows and columns are exact, and (3.11) is 

commutative. 

3.+i(p) 
I 

3 n  ( a ' )  - -  

I 
3n (a) 

1 
3 .  (p) 

1 
3 ._~  ( a ' ) . - -  

* T . + I  (q )  - -  0 ' Tn  ( p )  ~ T n  (q )  

1 l , l  1 
0 , 3 .  (c') ' 3 . - 1  (a') , 0 

[ I1 I J 
" 3 .  (b ' )  ~ Tn ( c ' )  ' 3 n - 1  ( a )  " 3 n - 1  (b ' )  

i i 1 
�9 3 .  ( q )  * 0 ' 3 n - 1  ( ~ )  ' 3 n - 1  (q )  

1 1 [ ! 
0 ' 3.-1 ( C ' ) ~ 3 n - 2 ( a ' )  --0 

(3.11) 



FUNCTORS WHOSE DOMAIN IS A CATEGORY OF MORPHISMS 233 

I f  one uses the isomorphisms available, then one obtains two distinct maps Tn(p)-~ 

T~(c'). The map through v._l(a') is 

"gn (:)w-l'gn-1 (;)Tn-1 (Ol)WTn (10)~ ~n (k : ) ,  

the map  through %(q) and ~n(b') is Since ~:. 7, o ' 

Therefore these two, maps a re  the same. I t  follows tha t  

Tn(b') ~zn(c') ~ _ i ( a ' )  = Tn(b')--> Zn(q) +- v,~(p)-~ Vn_i(a'). 

From this observation the exactness of the third row of (3.11) can be established by  

simple diagram chasing. For example: 

%~(b') ~'~n(c')--."vn_l(a) = vn(b' ) -+'~n(c')--->v~_l(a' ) ~ ~_i(a)  

= "cn(b')---'Vn(p)-+~n-l(a') ~vn_i(a) = o 

by  the exactness of the first column of (3.11). 

We shall now prove that  the long sequence is exact for every s.e.s, of ~I~; tha t  is, 

(% 0) is an h-flmctor, where 0 is defined by  (3.9). 

d 
A ~ B - - ~ O  

1- L 1 r Is 

A __L~ BOB'  
g 

�9 C @ B '  

la tb" c' 

(3.12) 

Take the commutat ive diagram (3.12) and proceed exactly as above to obtain the 

commutat ive diagram (3.13). With the possible exception of the third row, alI the rows 

and columns are exact. The first and fourth rows are exact from the above arguments; 

~n(r)'+~n(s) is an isomorphism by  a dual argument  to the one above. Exactness of the 

third row follows as soon as we verify tha t  the two maps %+i(c')-+vn(b) of (3.13) are the 

same. This will complete the proof of the theorem. 
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v,+~ (b') ' ~'n+2 (c') ' ~'n+l (a) ' Z'n+l (b') " "~'n+l (C')  

~ n + l  ( r )  ' ~ n + l  (8) ' 0 - - - -  Tn ( r )  ' 'g'n (8) 

,f t o.+~ t ! 1 
~ n + l  (b) ' ~ ' n + l  (C) - -  ~'n (a) ' lrn (b) , zn (c) 

I 1 11 1 ! 
T n + l  (b') ' ~n+x (c') ' Tn (a) . ~n (b') ' zn (c') 

1 1 ! I 1 
~'n ( r )  ' Zn (8)  , 0 ' ~ 'n -1  ( r )  ' ~ ' n -1  (8)  

(3.13) 

n_~ t Define u=<O, 1):B| v = < o ,  I>:C@B B. Then  r[[u and sl[v where r and  

s are defined in (3.7). Le t  y = { o ,  1}:B'-~B| Then  b'y=uy=l. I t  is clear t h a t  10B,= (o) = : OB'-+r-)OB', so Tn is the  inverse of the  excision isomorphism uy y y 

z,  (BO ) The faetor izat ion 
\ u  l" 

(:,)(OyB)= (OB):oB , ~b  gives vn (1)"rn (OB)='G ( O B ) ,  

or, 

This does not  follow f rom any  commuta t i ve  d iagram of A~; it is t rue  because v has  r ight-  

excision. 

Apply Tn to (B : )=  ( ? )  ~)  and use the above to obtain that the map vn(s) ~ 

vn(b) is 

S i n c e  ' --> ' ' - +  Vn+1(c ) v~(a) =~n+1(c )-~v~(a ) T~(a) it suffices to prove that for any n 

a v ~ o  t 

Tn( )----Tn+l(C )-+-gn(8)-+vn(b) = ,:n(a')-~Tn(a)-~vn(b). 

d ) .  The  first  m a p  is The  second m a p  is 7, d'p 
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Also, vkh=vgb*/'=<o, 1>{<1, o>, < - b ,  l>} ( l@d ' )=<-b ,  l > ( l @ d ' ) = < - b ,  d'>. Let 

t = <1, o>: BOA'--+ B. Consider the map 

Since this factors through 1, ~ bt = o. Moreover, 

o o 

If one applies v~ to this, then from the above remarks we have 

Therefore the two maps vn+l(c')~,:~(b) are the same. 
[b*\ -1 

Therefore (~, 8) is an h-functor. By  (3.8) we have vn(ses ]A [) = wn(A | ( 5 )  for 

5"=5"-1=((1 ,  o>, <1, 1~} and b*=(<l ,  o>, < - 1 ,  I > } : A @ A ~ A @ A .  Setp=<o ,  I>:A@A---> 

A and s={1,  o}:A---,A| p induces ~n--1 P 

lows that since pb*-ls = 1 :A ~ A  

/b*~-I  

=w~(A) 

= o~  (0A), A 0). 

Let (v, 8') be any h-functor such that for any A ~'(ses[Al)=o~n(0A, A0). Following 

the notation of (3.6) a special s.e.s, which is denoted by _S is produced. 

0 - - ~  0 ~ C@B 'l----~ C| ~ 0 

- C '  

0 , ___kk C ~ B '  , C' ~0 

:Fr~ the map [ (~) ,  (~) ,  ( : ) ]  : ses [DI-~-~q ~ ~ a c~ diagram 
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by applying ~ .  

v~ (DO) 

~ ( c ' )  - -  

co. ~ T~-I (0D) 

/ 
1 

- "r~-i (0D) 

Therefore 8~ (~) = eo~(0D, DO) T~ = 8~ (_~). Now apply a~ to the map 

[(;) 
and obtain the commutative diagram 

~ ( c ' )  9 . (3 .6)  

1 

a~(S) 
~ (c') 

I t  follows that  8=(3.6) = v~_l 

and (2.2)-~ (3.5) of diagram (3.3) 
t 

~(2.2). But since (2.2) was an 

arbitrary 8 is unique. Moreover, 

form (3.9). This is the analogue 

converse to Theorem 3.4. 

~n-1 (a') 

.1(:) 
~_1 (OD). 

(;)-la~(_~) =8~(3.6). Now using the given maps (3.6)-> (3.5) 

one obtains successively that  ~n(3.5) =8~(3.5) and 8n(2.2) = 

arbitrary s.e.s, of A s it follows that  8n =8~. Since n was 

any a which satisfies the hypotheses of (3.4) must have the 

of (2.6). The theorem now follows. We shall next prove a 

THEOREM 3.14. Let (% 8) be an h-/unctor A~->B. There is a unique graded/unctor 

oJ :As-> B 2 such that (% o)) is an E - H  /unctor and w(OA, AO) =8(seslA I ) i// /or every identity 

map 14 o / A  T(1A)=0. 

Proof. If eo is given such that  (v, ~o) is an E - H  funetor, then ~(e) -=0 for every equiva- 

lence e. 

If T(1) =0 for each identity map of A, then apply (v, 0) to seslA I . 

In  the resulting 1.e.s. of B there are the isomorphisms 

~n(A) =~(ses  I A I ) :vn(A0)->v~_I(0A). 

If (x, y) is an object of A s, x : X ~  Y, y: Y ~ Z ,  then define the functor eo:As-~B ~ to be 



F U N C T O R S  W H O S E  DOMAXN IS  A C A T E G O R Y  O F  M O R P H I S M S  237 

I t  is obvious that  ron(OA, AO) =0n(seslA ] ). ~ plays the same role as the flipping functor w. 

We shall verify that  (% o)  is an E - H  functor. L e t / : A ~ B  be any map of A. Form the s.e.s. 

(3.15) of A ~. 

0 , 0  , A - ~ I - A - - ~ O  

l l l ,  i 
0 , B  , B  , 0 - - ~ 0 .  

(3.15) 

mutative diagram of s.e.s.'s to obtain the commutative diagram of 1.e.s.'s (3.16) 

~0 

' ~ + 1  (/) 

v~+ 1 (A 0 )  ~ -+1  ~, (0A) . 0 - - 4 . . .  

* z~+~ (AO) , 3 .  (OB) ~ ~ .  (1) ~ . . .  

(3.16) 

Since ~n = 1 : "G(OA)-->'r,~(OA), then ~n+l~n+l B0 /). From (3.16) one 

then obtains the 1.e.s. (3.17) of ]~ which corresponds to (2.5) for the Object (0A,/)  of A s. 

(o) 
Vn ~n 

�9 . .  ~ ~ + 1 ( / )  ~ , , + 1  / lrn (OA ) - - ~  "r, (OB) vn(/)-" . . . .  (3.17) 

Since )t was arbitrary, it follows from [3, Thm. 2.13] that  (% o)  is an E - H  functor. I t  is a 

consequence of [3, Thm. 2.8] tha t  r is uniquely determined by the condition that  

eo(0A, A0) = ~ ( s e s l A  I). 

4. Some examples 

A. Let  (2.2) be any s.e.s, of A ~. There is always a 1.e.s. of A 

0-+ker a-+ker b-+ker c ~ c o k  a-~cok b-+eok c-+0. 

That  is, there is an h-functor (% 0) : A~-~ A given by z 1 = ker, T0 = cok, al = the usual zig-zag 

homomorphism which is defined in the category of relations of M, and all the other functors 

are zero. 

Since z(1) =0,  by Theorem 3.14 there is an r such that  (% co) is an E - H  functor. This 

can be proved quite independently if one chooses 
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w,(A) = la :kerA0-+eok0A. 

This is, for example, a problem in [12, p. 50]. I t  is a more interesting result to note tha t  

is half-exact so that  by  Theorem 3.4, ff we are given the E - H  funetor (v, ~o), there then 

exists a 0 such that  (T, 0) is the usual h-funetor. In  this manner one can find the zig-zag 

homomorphism in any abelian category without having to go to the category o/relations. 
B. Let  7/~ be the category of left R-modules over some ring R (with unit), and let 

~4b be the category of abelian groups. Consider the h-functor of [8, Theorem 13.16 dual/ 

which is given by  

vj = Ext-S(A, - )  for j < 0 ;  ~r - )  for j~>0, 

where A is a fixed R-module. In [10] P. J. Hilton and the author proved that  this funetor 

could be generalized to produce an E - H  funetor (~', to'): 7/12-+J4b, where z ' ( 0 A ) ~ ( A ) .  I t  

was also proven that  z' had right-excision, so by Lemma 2.7 and Theorem 3.4 there exists 

a 0' such that  (v', 0') is an h-functor ~ - ~ 4 b .  

gj(A, - )  is called the j th  projective homotopy group functor. There are three other 

functors of this kind 

(i): _ ~ ( - , B ) ,  (ii): ~ j ( A , - ) ,  (iii): ~ s ( - , B ) .  

Observe that  (i) and (iii) are contravariant functors. We call (ii) and (iii) the injeetive 

homotopy groups. There is a "dual" h-functor to the one above involving (iii) and 

E x t ' ( - ,  B). By [8, 13.15] (i) and (ii) are E - I t  funetors; they are not however generally 

h-funetors (see below). Kleisli [11] and Eekmann and Kleisli [4] have also studied these 

funetors. 

C. The functor ~1=~1(Z, -):~4b~-~4b is defined to be the abelian group given by 

horn(z,/)/hom0(z , / )  where z: Z-+Q is the usual monie of j4b, ] is arbitrary, and hom0(z , / )  

is the subgroup of maps which can be factored through any map of the type ]: I ~ J  of 

,4b, where I,  J ,  and ker j are all injeetives. I t  has been shown that  this is part  of an E - H  

functor. We shall show that  vl does not have right-excision, so by (3.4) and (2.7) it cannot 

be an h-funetor. In  fact ~0(Z, - ) :  j4b~,gb is not even half-exact. 

Let  o ~ z g E h Q ~ o  be a non-split s.e.s, of ~4 (this exists because Extl(Q, Z)40). 
Then by direct calculation 

~I(ZO)~=Z and vl(h)~-E. 

If ~1 had right-excision these would be the same. 

Similarly, ff we apply ~0(Z, - )  to this s.e.s, we obtain the sequence Z-~ E->O which is 

clearly not exact at E. 
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5. The extension of functors 

Let  A be a category with enough projeetives and injeetives, and let ~o:A-+B be a 

half-exact functor. The satellites of ~0 exist and form an h-ftmctor (~, ~). One would like to 

extend the definition of ~ to act on morphisms of ~4 also. I t  is proven here tha t  a ftmctor 
' 2 ~0:A -> B can be defined which is half-exact and has a satellite h-functor (~', e'). Moreover, 

~'(1) =0  so that  by  (3.14) there is an co' such that  (~', co') is an E - H  functor. Let  a :A-~A 2 

denote the embedding flmctor given by ~(/)= (~) .  If ~o vanishes on all the projectives of A, 

then there is a natural equivalence Qo-~0a which extends to a natural equivalence of the 

h-ftmctors. 

Let  C' be a subcategory of C, ? :C ' '>C the inclusion functor, and ~:C '~ :~  any 

functor. If there is a flmctor 2:C-+ :~ such that  2~ and ~u are naturally equivalent, 2~-~ ju, 

then 2 is said to extend/~. If ~u is a graded functor, then 2 extends # iff 2 is graded and 2 ~  ~#~. 

Let  ? ' :  Ses(C')-~Ses(C) be the functor induced by  ?, then the h-functor (2,~) extends the 

h-functor (~u, a) iff 2 ~ u  and ~ , ' ~ e .  

Example. Let 1 be the category with precisely one map 1 v =/L Let  $ be a small category 

with an initial object E. There is a unique functor 0:$-~1 which sends each map of $ 

to /L Let  ~:1-~$ send/~ to lz. These induce the embedding functor 0':.,4~.,4 s and its 

adjoint functor 7' : A S I A .  Given any sequence of A s 

o ~ 0 ' ~ " ~ o  

then by  [12, IX.3.1] it is a s.e.s, iff for each Y of $ 

O-+~' (Y)~Q(Y)~e"(Y)~O 

is a s.e.s, of ...4. The functor ~]' induces ~": Ses(AS)-+Ses(A) by  choosing Y = E .  For any 

h-functor (a, 9):A-~ B one then has the h-functor (aT' , ~q"):.,4s~ B which extends (a, ~). 

If S = 2  then a~'(1A)=a(A) which need not be 0. Therefore there is no co such that  

(aT', ~o) is an E - H  funetor. Extensions which vanish on every identity map will be produced. 

A class of objects 0 c A is a class of pro]ectives iff hom(P, - )  is exact for every PE 0 .  

The class of in]ectives :7 is defined dually. I t  is assumed that  A has enough projectives 

and enough injeetives. This will be taken to mean that  for each object A EA there are 

two selected objects, I A  E Y and P A  E ~,  such that  there are the two s.e.s.'s 

and 

F(0A) = O ~ A  ~ P A  P~ A -~ O, 

F ( A O ) = O ~ A  i lA~Y.A.- , .O.  

(5.1 a) 

(5.1b) 
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If A =0,  then both IA and PA are set equal to zero. If A is injective (projective), then 

IA (PA) is chosen to be A. For any map /:  A -~ B define F(/) as follows: let C be the pushout 

of / and i: A-~ 1.4, let D be the pullback of / and p :PB-~ B, and observe that  both squares 

of (5.2) are bicartesian. 

D n , A  i .121 

PB P, J~o 

By [9, Theorem 3.7] it follows that  the composite of the two squares is bicartesian and 

there is the s.e.s. 

LEMMA 5.3. I] A has enough in]eetives, then so does .,4 ~. 

Proo[. Let k: J ~ K  be an injective of A ~. J cannot be 0, becausethe monomorphism 
g ~ 

( 1 ) : 0 K ~ I ~  does not split. Clearly both J and K must be injectives of A. The s.e.s. 

(5.4) must split. 

0 - - ~ J  {1,2k} J@K ~ K  . 0  
! 

/ ( - k, 1) k (5.4) 

1 
0 ~ K  K 0 . 0  

In particular there must be a map (m, n ) : J ~ K - ~ J  such that  k(m, n ) = ( - k ,  1). 
Therefore kn=l ,  so k is epic and splits and there is an injective I such that  s: J~=I@K 
and ks-~= (o, 1). Since k was arbitrary every iniective of A 2 is isomorphic to a map of the 

form q = (o, I ) : I@K-~K.  Conversely any map of this form is an injective. To see this let 

(:)  : b~d be any monic of .,4~, and (~) : b~q=(o,  1) be a morphism. 

I ( 1 , o )  I@K,  e A a C 

(o ,1)  b d 

$ 

Since I and K are injective there are maps g :D~ K ,  and h : C ~ I  such that  go=] alld 

ha= (1, o) e. The map ({h' gd~) : d-~(O, 1) extends (~). 
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I f / :  A ~ B  is any map, let i: A-+IA  and j: B-+IB  be monics into injectives. The map 

(~ i~/~ } ) : ~-* ~ ~ ~ is the required m~ni~ int~ an injective. That  is~ A~ has en~ugh 

This dualizes immediately to give the corresponding result for projectives. 

In [8, Chapter 13] all the maps of injectives i: I - * J  with injective kernels (not neces. 

sarfly epic) were chosen as the class of injectives. I t  follows from the theory of Eflenberg 

and Moore [5] that  the class of s.e.s.'s on which the horn( - ,  i) are exact must be reduced-- 

which was indeed the case. 

In the subsequent discussion I4 will denote an abelian category with enough injec- 

tires and projectives. By generalizing the results of Cartan and Eilenberg [1, Chapter III], 

or by a remark of Mitchell [13, p. 203], any half-exact functor r gives rise to an 

h-functor (r ~); ,4-* B where Qn is the nth left (right) satellite S-nQo for n > 0 (n < 0). (r 8) 

is  called the satellite h-functor of Q0. Since Qn is half-exact, it is additive; e~ is additive by 

the construction procedure. Let a':Ses(A)-~Ses(A ~) be the functor induced by ~ :A -+.4 ~. 

We now state the main theorem of this section: 

T EEORE~ 5.5. Let Q0:A-+ B be a hall-exact/unctor with satellite h-/unctor (~, e). One 

can de/ine 

(i) a hal/-exact ]unctor e'o:A~-+ B with satellite h-]unctor (~', e'), together with 

(ii) a natural epimorphism o//unctors ~o-+~'o~ which extends uniquely to a natural 

trans/ormation (Q, e) 7-> (~' ~, e'r162 
such that 

(iii) 

(iv) 
(v) 

0'o(1A) = 0 / o r  every A o/ .4 ,  

O'o(P) = 0 / o r  every pro}ective p o / .4  ~, and 

the induced natural trans/ormation On-+~'n O~ is an equivalence ]or n < O. 

Any/unctor  ~'o which satis/ies the above conditions also satis/ies 

(vi) there exists'a unique r .4 a-+ 73 ~ such that r A0) = e'(ses [A [ )/or each A in A,  

and such that (~', co') is an E l i / u n c t o r ,  

(vii) O'o(i)=0 /or every in]ective i o / A  2, 

(viii) using the notation o/(5.2) 

e'~(/)-~Qn(o) /or 
Moreover, it can also be shown that 

(ix) 

(x) 

n<O. 

up to natural equivalence, ~'o is uniquely determined by (i)-+ (v), 

i/  ~o(P)=0 /or every projective P o/ ,4 then the natural trans/ormation o/ (ii) 

is a natural equivalence. That is, (~', e') extends (~, e). Also ~',(/)~-~n_l(D) /or 

n>0 .  
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Pro@ Define 5'o(/)=im e0(P(/)):sdC)-~5_x(D) where / is as in (5.2). To show that  this 

definition is independent of the choice of injective, let z :A-~J  be a monic into some other 

injective J .  Let  H be the pushout of i and z, and h : H ~ I H  a monic into an injective. 

The maps I A ~ H ~ I H  and J ~ H - ~ I H  are both monic and split. That  is, there is an in- 

jective K and an isomorphism I H  ~- I A  (~ K such that  the composition I A - *  I H ~  I A  ~ K 

is {1, o}. Using the monic {i, o } : A - ~ I A ~ K  instead of i in (5.2) one obtains a new s.e.s. 

P ' ( / )  =F(/)(~ (o]1 lx). I t  is clear that  e(oll I x ) = o  for every X. I t  follows from the additivity 

of e that  s o (F-(/))--s0(r(/))@o; that  is im s0(r-(/))=5'0(/). 

Now let C" be the pushout of / and z, and let K ~ be an injective such that  I H ~ - J @ K " .  

I t  follows that  there is an isomorphism x : I A  @ K ~ J  | K ~. Build a diagram (5.2) using the 

monic {z, o } : A ~ J @ K  n (P is kept fixed throughout). There is a map induced from the 

diagram built from {i, o} to this one, and there is a unique map y : C ~ K ~ C " @ K "  induced 

by the universal property of pushouts. Moreover, this induces a map of s.e.s.'s. 

0 . D . P @ I A @ K  ~ G@K , 0  

! 1 
0 , D , P @ J @ K "  - C " |  , 0  

from which it follows that  y is an isomorphism. Apply (5, e). 

5 o ( C ) @ 5 o ( K )  eo . 5 -1  (D)  

ep 
8O 

5o (C")~50 (K") ' 5-1 (D) 

I t  follows that  ime 0 is isomorphic to imeo ", and thus 5"o(/) is independent of the choice of 

injective (dually for projeetives). That  is, 5'o(/) is well-defined. 

A map (b) : / -~ / '  of A'~ induces a morphism 5'0(/)-~5'o(/'). I t  will be shown that  this is 

also well-defined. Place a prime on each object and map of (5.2) and denote it by  (5.2)'. 

Choose maps a' : IA--->IA', b" : P B ~ P B '  such that  a'i =i 'a  and bp =p'b' .  The maps a, b, a', 

and b' induce unique maps d: D ~ D '  and c: C ~ C '  which give a commutative diagram 

corresponding to a map (5.4)-~(5.4)'. This in turn induces a map F(/)-~F(/'). If (5, e) is 

applied to this, the commutative diagram (5.6) is obtained. 

00(o) t _~  5;(/) 8.5-1 (D) 

/ 5o (c) 5-1 (d) 

i ' , , ~, 
5o(C')-:- '~ 5s s 5-1 (D') 

' 0-1 ( I A |  

1 
�9 0-1 ( I A ' @ P B ' )  

(5.6) 
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Let  st =Co(F(/)) and s't' =e0(F(/')) be the canonical factorizations into an epic followed 

by a monie. Since s and s' are the kernels of the maps on their right, there is a unique 

map ~'0(/)-+~'o(/') induced. Dually there is a unique map induced because t and t' are 

eokernels, and this must be the same map. If one varies IA ,  IA ' ,  or the choice of a', one 

does not change s, s', or ~_l(d) so the induced map does not change either. Dually if one 

changes PA,  PA' ,  and b' the induced map doesn't change. Therefore ~0 b : ~ ~ 1 7 6  

is well-defined. The fact that  ~'o(b) is well-defined could have been deduced, with a little 

work, from this result. (This argument, which is due to P. J.  Hilton, appears also in [10].) 

The remainder of the proof that  Q'• is a functor is now trivial. 

Take any s.e.s. (2.2) of ,.4 e and let i:B--, I and j:C--, J be monies into injectives. Form 

the s.e.s. (5.'/), and note that  each vertieal map is monie. 

d e 
0 , A  B 

{a, id} (b,{i,]e}} 

. A ' G I  d'G{1,o}. B'@ (I@J) e'@(o, 1) 

C ,0  

C' |  �9 0 

(5.7) 

The sequence of cokernels O o X ~  Y ~ Z ~ O  is exact. Each eokernel is a pushout, i.e. X 

is the push0ut of a and id, and their pushout squares are bieartesian. 

Dually take epics p: P-->A' and q: Q ~ B '  where P and Q are projectives. By a dual 

argument three new bicartesian squares are formed, and the pullbacks form a s.e.s. 

O-+U~ V-+ W~O. 

Each map a, b, and c stands as the common edge of two bicartesian squares. The s.e.s.'s 

resulting from the composition of these pairs of squares are represented by the columns 

of the commutative diagram (5.8). The lines are Mso exact. The middle line splits. 

0 0 0 

0 , U  V' , W  ~ 0  

1 (1,o~ 1 <o, 1) j !  (5.8) 
0 , I@P " ~ (I |174174 ~ Q ~-0 

1 1 1 
0 . X  ~Y Z . 0  

l 1 1 
0 0 0 

1 6 - - 6 7 2 9 0 6  Acta mathema~a. 118. I m p r i m 6  le 21 j u in  1967. 
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Apply (p, ~) to (5.8) to obtain the commutative diagram (5.9). The maps Q0-~Q0 are 

all epic. The top line splits at ~o((I|174174 The exactness of the bottom line is 

easily verified by a diagram chasing argument, and this proves that  P'o is a half-exact 

functor. Let (p', e') denote the satellite functor of p0- 

Qo(i| ) {1,o} Qo((i|174174 ) <o, 1> o Qo (J| ' ~-1 (I|  

1 l 1 ! 
~0 (X) ~0 (Y) ~0 (Z) SO ' ~-1 (X) 

Qo (a) Qo (b) eo (c) 

(5.9) 

If F(0A) is taken as in (5.1a), then there is a natural epimorphism given by the fac- 

torization of e0(F(0A)) into an epic followed by a monic, which maps ~0(A) onto ~'0(0A). 

That  is, there is a natural transformation ~0o~'0a. By the techniques of Caftan and Eflen- 

berg [1, Proposition III.5.2] (these certainly can be immediately carried over to the abelian 

categories under discussion here), this natural transformation extends uniquely to a 

natural transformation of h-functors (~, ~)-~ (~'a, e ' s  where ~' : Ses(/i)-+ Ses(/i ~) extends ~. 

The only hypothesis that  must be checked is that  Q'~a(P)=0 for all projectives P and all 

n >0. But 0P is a projective o f / i  s by (5.3), so ~'~(0P)=0. This gives (ii). 

Let  14 be any identity map o f / i .  Denote IA  and P A  by I and P. From the properties 

of pullback and pushout it is clear tha t  in the situation of (5.2) one could take C=  I, 

D = P ,  g = l ,  e=l ,  and 

F(la) = 0 -~P  {1, - ip} P |  <ip, 12 I-,- O. 

This is a split s.e.s, so Q'0(la)=ime0(F(1A) ) =0. This is condition (iii). 

Form the s.e.s. 6 ~ l A - + l i - + l z a ~ 6  of A s. 11 is an injective o f / i  s by (5.3), so Q'n(11) =0  

for all n <0. Apply the h-functor (~', ~') to the above s.e.s. Note that  since Q'0(1A)=0 for 

every A it follows that  Q' I(1A)=0 for all A also. Simflarily one can show that  Q'n(lx)=0 

for all n and all X. I t  follows from Theorem 3.14 that  there is a unique functor co,:/is_+ B~ 

such that  (~', co') is an E - H  functor, as in condition (vi). By Theorem 3.4 and Lemma 2.7 

one obtains that  ~' has left- and right-excision. 

Let P be any projective o f / i .  FOP) is the s.e.s, o]11 e of ,4 s, so ~'0(0P)=0. Let  {o, 1}: 

Q-~POQ be any projective of ,4 s. By excision Q'0({o, 1})-~ '0(0P)=0.  

There is a dual proof for injectives (o, l>:I@J--)-J. However, if one wished to avoid 

using the definition of ~'0, one could simply observe that  if one assumes statement (v) 

~'o((O, 1)) ~ ~'o(I0) ----- ~'_1(0I) ~ ~.1(I) ----- O. 
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This does not dualize for projectives. This lack of symmetry,  which also appears in (x), 

is due to our choice of the embedding functor a:A-+A ~. I t  also follows that  ~ '~(0I )=0  

for all n < 0  and all injectives I ,  even though 0 I  isn't  itself injective. Therefore (iv) and 

(vii) are satisfied. 

Let  R=P(IA)  be a projective and r : R ~ I A  an epimorphism. One obtains the com- 

muta t ive  diagram (5.10) where the second line is  a par t  of the 1.e.s. used to obtain O'0(A0) 

from (5.1b). The maps s, t, and u are all cokernels of the maps preceding them in the dia- 

gram and can be thought of as the maps used to define the respective ~'o objects, d o is 

epic because ~'_I(OIA)=0. 

1 
eo (R) Qo (R) 

~o (r) 

~o (IA) 

8 1(o,) 
, ~ ~o 

~o (OIA) - -  

(0 ~0 "eo (2:A) (5.10) 

t 

00 (02:A) 

u 0g (A0) ~ ' " 0 _  1 ( A )  

Y 

eo 0-1 (0~1) 

The map Qo(ZA)-->e_I(A) is ~0(iH0, which is a cokernel of Qo(1), so the map y: 0_I(A)-~ 

Q' I(0A) is uniquely determined. By chasing the diagram one finds tha t  y is an isomorphism. 

But  this is precisely the procedure of [1] in the proof of the universality of the right satel- 

lites. I f  one iterates this procedure one has tha t  ~ n - ~ ' ~ a  is an isomorphism for all n < 0 .  

This proves statement (v). 

Take any  map ] as in (5.2). Consider the maps (1, o ) : B |  and {/, i } :A-~B~)I  

and notice that  theft: composition is /. By  excision and the results above 

e'~({/,i})~e'n(0c)~e~(c) for n<o,  

~'~(<1, o)) ~ ~'~(I0) = 0 for n ~< 0. 

Apply the E - H  functor (~', co') of (vi) to the maps ({/, i}, (1, o)) and use the isomorphisms 

above to obtain from the usual 1.e.s. of B the isomorphisms of condition (viii) 

Q,~(C)~-Q'n(/) for n<0.  

This result is independent of the I or monic A - ~ I  used to obtain a C. Dual ly  one obtains 

an isomorphism 
qn(/)=On_l(OD) for n > 0  

but  ~'n_l(OD) is not generally isomorphic to O~I(D) [see example 5.15]. 
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In the situation of (5.9) one would therefore have that  ~_I(X), O_I(Y), a n d  ~_I(Z) are 

respectively isomorphic to Q'0(a), O'0(b), and ~'o(c). Also, the composition 

eo(Qo(J @ Q) -+~o(Z)) = o 

so t 0 factors through ~'0(c). The map induced from ~'0(c)-~_x(X) together with the iso- 

morphism ~_l(X)~ '_ l (a)  is actually e' 0. 

Following the notation of (5.2), ~_I(IA)=0. If  (~, e) is applied to F(/), then by the 

definition of ~'o(/) there is an exact sequence 

0-~ ~)(l) -> ~-I(D) ~-~(~ ~- ~(PB). (5.11) 

Let an arbitrary functor Q'0: A e ~  B which also satisfies all the conditions (i)-+(v) be 

chosen. The satellite h-functor of Q'0 is denoted by (Q', e'). The kernel of the epimorphism 

p of (5.2) is denoted by ~B.  Since D is a pullback one obtains from (5.2) a s.e.s. (5.12) 

of A ~. 
5 ~ l a B ~ e ~ / ~ 5  (5.12) 

A 1.e.s. is obtained from the action of (#', e') on (5.12). Since ~'n(1A) =0 for every 

A, if n = 0 ,  it is also true for every n. I t  follows that  the 1.e.s. contains isomorphisms for 

each n 
~-~(e) ~e-~(/). (5.13) 

Let (Q-, co-) be the E - H  functor which exists by (vi), and apply it to (0D, e). Since 

O ~ P B  is a projective of A 2 then by (iv) one obtains from the 1.e.s. the exact sequence 

0 =o~(OPB)~og(e)~'_~(OD) 0"-1 (OPB). 

By (ii), (v), and (5.13) an isomorphic exact sequence is obtained 

0 "+ ~O(l) ~ q-1 (D) ~-1 (e) ~-1 (PB) .  

But from (5.11) one has that  q'0(/) is also a kernel of Q_z(e). Therefore there exists a 

unique isomorphism Q'o(/)-+Q-o(/). Moreover, it is trivial to note that  given any map/-~/ ' ,  

the appropriate square of maps commutes. That is, there is a natural equivalence Q'o-+Q'o, 

so 0'o is essentially unique. This proves (ix). 

If Qo(P) =0 for every projective P, then if Qo is applied to the s.e.s. (5.1 a) the sequence 

0 = ~o(PA) ~ 0o(A) ep~ 0o(0A ) monic ~l(nA) 
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is obtained.  I t  follows tha t  ~0(A) is isomorphic to ~o'(0A) for every  A. This induces a na tu ra l  

equivalence ~ o - ~ ' o a  which extends  uniquely  to a na tu ra l  equivalence (~, e)->(~'~, e 'a ' ) .  

For  categories in which ~0(P)=0  for all P one could in fact  define q'0(0A)=~0(A) and  

0 = ~o(]) for all A and all ] of ~4. Wi thou t  loss of general i ty  this will be assumed.  

To complete  the proof  of the theorem one notes  t ha t  there  are now isomorphisms 

~'~(/)~'n_I(OD)=Q~_I(D) for  n > 0 .  Q.E.D.  

Le t  j4 (n) be the i te ra ted  morph i sm category  (... (~42) ~ ...)3, where ~4 (~ = ~4 and  ~4 (x) = ~4 ~ 

The  f tmctor  ~:~4(~ (1) can be i te ra ted  to give embeddings  j 4 ( ~ 4  (~+1) for all n. I f  

~4 has enough injeetives (projectives) then  so does ~4 (n). Define ~4 ~176 (Jn~4 (~). This is an  

abel ian category.  I f  A has enough projeetives,  then  so does ~4 ~176 This is not  t rue  for in- 

jectives; ~4 ~ has none ! The  morphisms  of A ~176 can all be identified with objects  of ~4 ~ B y  

interchanging 5 and  / in the definit ion of a one obtains  a dual  embedding.  

Each  occurrence of ~4, ~o, and  ~'o in the  s t a t emen t  of (5.5) can be replaced b y  ~4 (~), 

~'0, and  ~(2) o respect ively  to obta in  a new theorem.  No fur ther  proof  is required. One can in 

fact  make  successive rep lacements  wi th  ~[(2), ~(~)o, ~(a)0; ~(~), ~(a)0, ~(4)0; ...; A(~), ~(n)0, 

~(n+l~ 0 for every  n~>2 to obta in  new t rue  theorems.  There  is a considerable connection 

be tween ~(=) and  ~, because for m < 0  ~(n),n(X ) is isomorphic to ~m(X') for some suitable 

X '  of A (X is an object  of A(~)). 

COROLLARY 5.14. Let (~, e) be given as in Theorem 5.5 and assume that ~o(P) = 0 / o r  

every pro~ective P, A n  h-/unctor (~oo, eoo):Aoo_+B can then be de/ined which extends (~, e) 

and such that 

(i) i / A 6 A  (=~, ~~176 

(ii) there is an E - H  /unctor (~o, o~OO). 

Proo/. Each  A f iA ~~ [.JA (=) mus t  belong to A (") for some smallest  n, say h r. B y  the 

convent ion adopted  above 
O(N)(A) = ~)(~+I)(A ) . . . . .  

where the  distinction be tween A and  its image 0A in A (N+I) and  its u l t imate  image in A ~176 

is ignored. Set ~~176 Clearly ~~  o vanishes on all project ives  and  ident i ty  maps  

of A ~176 (there are no injectives). I f / J i g  is a s.e.s, of j4 ~176 it is also a s.e.s, of ~[(N) for some 

/Y and one can define the  act ion of (~oo, e~o) to be t ha t  of (~(N), e(N)). Similarily an E - H  

functor  is obtained.  

I f  one is given a ~o which is not  zero on each P,  then  one could res ta te  Corollary 5.14 

using ~'0 and  the relat ionships be tween ~0 and  ~'o ment ioned  in (5.5). 
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Example 5.15. Let  R be the ring of integers modulo 8, z4 the category of R-modules, 

]~ the category of abelian groups, and ~o=HomR(4R, - ) : , 4 - + B .  There is a s.e.s. (5.16) 

of R-modules 

O~2R~R~4R~O, (5.16) 

where i is the inclusion of the submodule. :From the definition of ~'0 one obtains 

~)'0(0-+2R) ~ Z/2Z~= ~'0(0-+4R). 

Since 0-~R is a projective ~ ' , (0R)=0  for n>~0. Apply :r to (5.16) to obtain a s.e.s, of 

A e upon which (~', e') acts to give the exact sequence 

0 =Q'I(0R)-+Q'x(04R)-+~'0(02R )-+Q'o(0R) = 0. 

Therefore ~)'1(04R)=~ Z/2Z. But  ~1(4R)=0. Similarly e '~(04R)~ Z/2Z for all n > 0. 

Thus the property of being left-exact is not preserved when we pass from r to ~'0. 

On the other hand, if e0 is right-exact then ~'0=0. Such cases can be handled by  defining 

e"o(/) = imei(P(/)). 

B y  a similar argument  to the one used in (5.5) there is a natural  monomorphism ~"0~-+~o 

which is an equivalence if ~0(I)=0 for every injective I .  

If  ~o is contravariant,  one can simply replace B by  ~ P  to find the corresponding 

theorems. 

In  [10, Theorem 5.3] the authors proved that  Ext ' (A,  q ) ~ E x t ~ - l ( A ,  Y~), n~>2 for 

a n y  suspension Y, qJ:Y.X-+ZY of ~v:X~ Y. The same proof is not used here because injec- 

t i res  of A e are restricted by  (5.3) to be maps of the type (1, o):I| whereas any 

map  I--+J was allowed in [10]. This gives a slightly bet ter  result. 

I f  one insists that  Z / b e  the cokernel of a monomorphism /-+ i, where i is an injective 

of M e, then by  applying the h-functor (Q', e') to the s.e.s. 

one obtains ~)'n(~]l)~ ~'n-l(l) for n < 1. This gives one "more"  isomorphism on the left than 

was had before. 

Although abelian categories have been almost exclusively used here, one can obtain 

corresponding results in additive categories with additional structure, such as triangu- 

lated categories. 
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