Abstract
We study the existence of positive solution $w\in H_0^1(\Omega)$ of the quasilinear equation $-\Delta w+ g(w)|\nabla w|^2=a(x)$, $x\in \Omega$, where $\Omega$ is a bounded domain in $\mathbb R^N$, $0\leq a\in L^\infty (\Omega )$ and $g$ is a nonnegative continuous function on $(0,+\infty)$ which may have a singularity at zero.
Citation
David Arcoya . Pedro J. Martínez-Aparicio . "Quasilinear equations with natural growth." Rev. Mat. Iberoamericana 24 (2) 597 - 616, July, 2008.
Information