Abstract
The Maximality Principle is a scheme which states that if a sentence of the language of ZFC is true in some CCC forcing extension , and remains true in any further CCC-forcing extension of , then it is true in all CCC-forcing extensions of V, including V itself. A parameterized form of this principle, , makes this assertion for formulas taking real parameters. In this paper, we show that has the same consistency strength as ZFC, solving an open problem of Hamkins. We extend this result further to parameter sets larger than .
Citation
George Leibman. "The Consistency Strength of ." Notre Dame J. Formal Logic 51 (2) 181 - 193, 2010. https://doi.org/10.1215/00294527-2010-011
Information