Open Access
2014 Inequalities for the Minimum Eigenvalue of Doubly Strictly Diagonally Dominant M-Matrices
Ming Xu, Suhua Li, Chaoqian Li
J. Appl. Math. 2014(SI21): 1-8 (2014). DOI: 10.1155/2014/535716

Abstract

Let A be a doubly strictly diagonally dominant M-matrix. Inequalities on upper and lower bounds for the entries of the inverse of A are given. And some new inequalities on the lower bound for the minimal eigenvalue of A and the corresponding eigenvector are presented to establish an upper bound for the L1-norm of the solution x(t) for the linear differential system dx/dt=-Ax(t), x(0)=x0>0.

Citation

Download Citation

Ming Xu. Suhua Li. Chaoqian Li. "Inequalities for the Minimum Eigenvalue of Doubly Strictly Diagonally Dominant M-Matrices." J. Appl. Math. 2014 (SI21) 1 - 8, 2014. https://doi.org/10.1155/2014/535716

Information

Published: 2014
First available in Project Euclid: 27 February 2015

MathSciNet: MR3253625
zbMATH: 07131674
Digital Object Identifier: 10.1155/2014/535716

Rights: Copyright © 2014 Hindawi

Vol.2014 • No. SI21 • 2014
Back to Top